

Available online at www.sciencedirect.com

J. Differential Equations 261 (2016) 5590-5608

Journal of Differential Equations

www.elsevier.com/locate/jde

On the locally self-similar solution of the surface quasi-geostrophic equation with decaying or non-decaying profiles

Liutang Xue

School of Mathematical Sciences, Beijing Normal University and Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, PR China

Received 4 April 2016

Available online 20 August 2016

Abstract

Motivated by the numerical simulation and the study on several 1D models, we consider the locally selfsimilar singular solutions for the surface quasi-geostrophic equation with decaying or non-decaying blowup profiles. Based on a suitable local L^p -inequality in terms of the profile and the bootstrapping method, we show some exclusion results and derive the asymptotic behavior of the possible blowup profiles. © 2016 Elsevier Inc. All rights reserved.

MSC: 76B03; 35Q31; 35Q35; 35Q86

Keywords: Locally self-similar solutions; Surface quasi-geostrophic equation; Blowup profiles; Exclusion results

1. Introduction

In this paper we address the Cauchy problem of the surface quasi-geostrophic (abbr. SQG) equation

http://dx.doi.org/10.1016/j.jde.2016.08.012 0022-0396/© 2016 Elsevier Inc. All rights reserved.

E-mail address: xuelt@bnu.edu.cn.

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta = 0, \\ u = (u_1, u_2) = (-\mathcal{R}_2 \theta, \mathcal{R}_1 \theta), \\ \theta|_{t=0} = \theta_0, \end{cases}$$
(1.1)

where $(x, t) \in \mathbb{R}^2 \times \mathbb{R}^+$, $\mathcal{R}_i = \partial_i |D|^{-1}$ (i = 1, 2) is the usual Riesz transform, $\theta : \mathbb{R}^2 \to \mathbb{R}$ is a scalar field understood as temperature or density field, and $u : \mathbb{R}^2 \to \mathbb{R}^2$ is the velocity field of \mathbb{R}^2 . The SQG equation arises from the geostrophic study of the highly rotating flow (cf. [17]) and is viewed as a 2D simple model sharing much formal analogy with the 3D Euler equations (cf. [8]). It is known for some time that the SQG equation associated with smooth initial data generates a local smooth solution, e.g., for $\theta_0 \in H^s(\mathbb{R}^2)$, s > 2, there exists a unique solution $\theta \in C([0, T[; H^s(\mathbb{R}^2)))$ with some T > 0 and u is expressed as

$$u(x,t) = \text{p.v.} \int_{\mathbb{R}^2} K^{\perp}(x-z)\theta(z,t)dz, \qquad (1.2)$$

with $K^{\perp}(z) := \frac{1}{2\pi} \frac{z^{\perp}}{|z|^3}$, $\forall z \neq 0$; moreover, if additionally $\theta_0 \in L^p(\mathbb{R}^2)$ with $p \in [1, \infty]$, the solution also satisfies $\theta \in L^{\infty}([0, T[; L^p(\mathbb{R}^2)) \text{ with } \|\theta\|_{L^{\infty}([0,T[; L^p(\mathbb{R}^2))} \leq \|\theta_0\|_{L^p(\mathbb{R}^2)}$ (e.g. [14, Proposition 6.2]). In recent years there have been intense mathematical works on the SQG equation and its dissipative cases (one can see [2] for a long list of references), but so far the fundamental problem: whether the local smooth solutions remain regular forever or develop blowup singularity at finite time, remains completely open.

Some numerical simulation was also made to understand the issue of finite-time blowup. It was suggested by [15,18,13], and very recently by [19,20] that the finite-time singularity formulation for the SQG equation is possible to happen, via a self-similar cascade of filament instabilities of geometrically decreasing spatial and temporal scales. Other past numerical studies [8,9,16] mainly focused on the flow of a closing saddle geometry, and through a much higher resolution than [9,16], Scott in [19] pointed out that the self-similar type filament instability mentioned above was also potentially important in this scenario.

Motivated by the numerical work, we here mainly focus on the self-similar singular solution for the SQG equation (1.1), i.e., the solution of the form

$$\theta(x,t) = \frac{1}{(T-t)^{\frac{\alpha}{1+\alpha}}} \Theta\left(\frac{x-x_0}{(T-t)^{\frac{1}{1+\alpha}}}\right), \quad \forall (x,t) \in D \times]0, T[,$$
(1.3)

where $\alpha > -1$, $x_0 \in D$, $D \subset \mathbb{R}^2$ is the blowup region, T > 0 is the finite blowup time, $\Theta(\cdot)$ is the stationary profiles of θ , and the solution θ is regular enough on $(\mathbb{R}^2 \setminus D) \times [0, T[$. If $D = \mathbb{R}^2$, the self-similar solution (1.3) is referred to as the globally self-similar solution; while if $D \subsetneq \mathbb{R}^2$, (1.3) is called the locally self-similar solution. For the globally self-similar solution (1.3), the velocity field u is also globally self-similar satisfying that

$$u(x,t) = \frac{1}{(T-t)^{\frac{\alpha}{1+\alpha}}} U\left(\frac{x-x_0}{(T-t)^{\frac{1}{1+\alpha}}}\right), \quad \forall (x,t) \in \mathbb{R}^2 \times]0, T[,$$
(1.4)

with $U(\cdot)$ the velocity profile. In terms of (Θ, U) , we formally get

5591

Download English Version:

https://daneshyari.com/en/article/4609362

Download Persian Version:

https://daneshyari.com/article/4609362

Daneshyari.com