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Abstract

The authors consider the Dirichlet problem for the nonstationary Stokes system in a threedimensional
cone. They obtain existence and uniqueness results for solutions in weighted Sobolev spaces and prove a
regularity assertion for the solutions.
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0. Introduction

The present paper deals with the Dirichlet problem for the nonstationary Stokes system in a
threedimensional cone K. This means, we consider the problem

]
8—I:—Au+Vp=f, V.u=g inK x(0,00), (1)
u(x,t)=0 forxedK, t>0, u(x,00=0 forxeKk. 2)
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The goal of the paper is to prove the existence and uniqueness of solutions in weighted Sobolev
spaces and a regularity assertion for the solutions. A theory for the heat equation in domains
with conical points and edges was established in a number of papers in the last 30 years, see [2,7,
10-12,16,18,19]. This theory involves in particular existence and uniqueness results for solutions
in weighted Sobolev and Holder spaces, regularity assertions and the asymptotics of the solutions
near vertices and edges. A class of general parabolic problems in a cone was studied in [4-6].
However, this class of problems does not include the Stokes system. Although the stationary
Stokes system in domains with conical points and edges is well-studied (see, e.g., [3,14,15]),
there is still no theory for the nonstationary Stokes system in domains with singular boundary
points. The present paper is a first step in developing such a theory.

An essential part of the paper (Sections | and 2) consists of the investigation of the parameter-
depending problem

si—Ai+Vp=f, —V-i=g§ inK, ia=0 ondKk, (3)

which arises after the Laplace transformation with respect to the time ¢. In Section 1, we prove
that this problem has a uniquely determined variational solution (i, p) € E }3([( ) X (Vg (K) +
Vﬁ} (K )) if Res > 0, s # 0 and |B] is sufficiently small. Here Vé (K) denotes the weighted
Sobolev space of all functions (vector-functions) with finite norm

281 2 1/2
”u”V,é(K)=</Zr B +|ot|)|8;tu(x)| dx) i (4)

Kk lal=l

while E fg (K) is the weighted Sobolev space with the norm

1/2
||u||E/15(K) = (/ Z (r2/3 + rz(ﬁ—l+\<x|))|8;xu(x)|2dx) / ’ 5)

K lel=!

r = r(x) denotes the distance of the point x from the vertex of the cone.
The goal of Section 2 is to prove the existence and uniqueness of solutions (i, p) € Eé (K) x

Vﬁl (K) of the parameter-depending problem in the case Res > 0, s # 0. Note that the prob-
lem (3) is not elliptic with parameter in the sense of [ 1]. Therefore, the results concerning general
parabolic problems in a cone which were obtained in [4-6] are not applicable to our problem.

We get two S-intervals for which we have an existence and uniqueness result in the space
Eé (K) x Vﬂ1 (K), namely the intervals

L ogrcp<l ana 1op '<++1/\++3) ©)
——A <B<=- and = < B <min =, =
2 M 2 2 Ha Ty

(see Theorems 2.2 and 2.3). Here, 1] and ] are positive numbers depending on the cone. More
precisely, )\f is the smallest positive eigenvalues of the operator pencil £()1) generated by the
Dirichlet problem for the stationary Stokes system, while ,u; is the smallest positive eigenvalue

of the operator pencil /(1) generated by the Neumann problem for the Laplacian, respectively.
We show that the above inequalities for 8 are sharp.
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