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Abstract

This paper is concerned with space periodic traveling wave solutions of the following Lotka–Volterra 
competition system with nonlocal dispersal and space periodic dependence,{

∂u1
∂t

= ∫
RN κ(y − x)u1(t, y)dy − u1(t, x) + u1(a1(x) − b1(x)u1 − c1(x)u1), x ∈ R

N

∂u2
∂t

= ∫
RN κ(y − x)u2(t, y)dy − u2(t, x) + u2(a2(x) − b2(x)u1 − c2(x)u2), x ∈ R

N .

Under suitable assumptions, the system admits two semitrivial space periodic equilibria (u∗
1(x), 0) and 

(0, u∗
2(x)), where (u∗

1(x), 0) is linearly and globally stable and (0, u∗
2(x)) is linearly unstable with re-

spect to space periodic perturbations. By sub- and supersolution techniques and comparison principals, we 
show that, for any given ξ ∈ SN−1, there exists a continuous periodic traveling wave solution of the form 
(u1(t, x), u2(t, x)) = (�1(x − ctξ, ctξ),�2(x − ctξ, ctξ)) connecting (u∗

1(·), 0) and (0, u∗
2(·)) and propa-

gating in the direction of ξ with speed c > c∗(ξ), where c∗(ξ) is the spreading speed of the system in the 
direction of ξ . Moreover, for c < c∗(ξ) there is no such solution. When the wave speed c > c∗(ξ), we also 
prove the asymptotic stability and uniqueness of traveling wave solution using squeezing techniques.
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1. Introduction

Various forms of dispersal of organisms exist in almost all biological systems [4,13]. Roughly, 
dispersal means the movement of organisms from one location to another. Random dispersal 
and nonlocal dispersal are among important forms of dispersal of organisms in population dy-
namics. The underlying mathematical assumption for random dispersal is that organisms can 
only move to its immediate surrounding neighborhood and the transition probabilities in all 
directions are the same. Differential operators, e.g. �u, are often adopted to model random 
dispersal (see [3,38,39] for study on the role of dispersal in biological systems). In many bio-
logical systems, organisms can travel for some distance and the transition probability from one 
location to another usually depends upon the distance the organisms traveled. Such dispersal 
is referred to as nonlocal dispersal and is usually modeled by proper integral operators, such 
as, 
∫
RN κ(y − x)[u(y) − u(x)]dy (see [6,17,21,22] for backgrounds on nonlocal dispersal). It is 

of great importance to study random as well as nonlocal dispersal models arising from applied 
sciences.

Many random dispersal models arising from biology and ecology, including models for sin-
gle species and for two competitive species, have been extensively studied and are quite well 
understood. In recent years, there have also been a lot of studies on nonlocal dispersal models, 
in particular, models for single species, arising from biology and ecology. However, the under-
standing of nonlocal dispersal models for two competitive species in spatially and/or temporally 
heterogeneous environments is still very limited. The objective of the current paper is to study 
the existence, uniqueness and stability of space periodic traveling wave solutions of the following 
two species Lotka–Volterra competition system with nonlocal dispersal,{

∂u1
∂t

= ∫
RN κ(y − x)u1(t, y)dy − u1(t, x) + u1(a1(x) − b1(x)u1 − c1(x)u2), x ∈R

N

∂u2
∂t

= ∫
RN κ(y − x)u2(t, y)dy − u2(t, x) + u2(a2(x) − b2(x)u1 − c2(x)u2), x ∈R

N,
(1.1)

where u1 = u1(t, x) and u2 = u2(t, x) denote the densities of two competing species at space 
location x ∈ R

N and time t ∈ R
+; κ(·) is a C1 nonnegative convolution kernel supported on 

a ball centered at 0 (that is, κ(z) > 0 if ‖z‖ < r0 and κ(z) = 0 if ‖z‖ ≥ r0 for some r0 > 0, 
where ‖ · ‖ denotes the norm in RN ), 

∫
RN κ(z)dz = 1; and ai(·), bi(·) and ci(·) (i = 1, 2) are 

C0 and periodic in x with period vector (p1, p2, · · · , pN) in the sense that ai(· + plel ) = ai(·), 
bi(· + plel) = bi(·), ci(· + plel) = ci(·), el = (δl1, δl2, . . . , δlN ), δlk = 1 if l = k and 0 if l �=
k, l, k = 1, 2, . . . , N , and bi(x), ci(x) > 0 for x ∈ R

N , while ai(·) may change sign. In the 
context of ecology, ai(·) (i = 1, 2) are growth rates of the ith species, and bi(·), ci(·) account 
for inter- and intra-competition between the two species.

Observe that, when u2(t, x) ≡ 0, (1.1) reduces to

∂u1

∂t
=
∫
RN

κ(y − x)u1(t, y)dy − u1(t, x) + u1(a1(x) − b1(x)u1), (1.2)

and when u1(t, x) ≡ 0, (1.1) reduces to

∂u2

∂t
=
∫
RN

κ(y − x)u2(t, y)dy − u2(t, x) + u2(a2(x) − c2(x)u2). (1.3)
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