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Abstract

We consider the parabolic system ut − �u = f (t)urvs, vt − �v = g(t)uqvs , in � × (0, T ), where 
� ⊂ R

N is either an unbounded or bounded domain and f, g ∈ C[0, ∞). We find conditions for the global 
existence or nonglobal existence, which are expressed in terms of the behavior of ‖S(t)u0‖∞ as t → ∞, 
where u(t) = S(t)u0 is the solution of the linear problem ut − �u = 0, u(0) = u0.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let � ⊂R
N be any domain with smooth boundary ∂� and T > 0. We consider the following 

coupled parabolic system⎧⎪⎪⎨
⎪⎪⎩

ut − �u = f (t)urvp in � × (0, T ),

vt − �v = g(t)uqvs in � × (0, T ),

u = v = 0 on ∂� × (0, T ),

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0 in �,

(1)
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where u0, v0 ∈ C0(�), r, s, p, q > 0 and f, g ∈ C[0, ∞).
Systems of the form (1) naturally arise in studying nonlinear phenomena in biology, chem-

istry and physics. For instance, system (1) has been used to model densities and temperatures in 
chemical reactions, condensate amplitudes in Bose–Einstein condensates, wave amplitudes (or 
envelops of multiple interacting optical modes) in optical fibers, and pattern formation in eco-
logical systems. The quantities u, v represent densities, temperatures, amplitudes, etc., and are 
nonnegative, see [18] and references therein.

It is well known that problem (1) admits a solution, defined on a maximal interval [0, Tmax), 
(u, v) ∈ C([0, Tmax), [C0(�)]2) verifying

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = S(t)u0 +
t∫

0

S(t − σ)f (σ )ur(σ )vp(σ )dσ,

v(t) = S(t)v0 +
t∫

0

S(t − σ)g(σ )uq(σ )vs(σ )dσ,

(2)

for every t ∈ [0, Tmax). Moreover, we have that either Tmax = +∞ (global solution) or Tmax < ∞
and lim supt→Tmax

(‖u(t)‖∞ + ‖v(t)‖∞) = +∞ (nonglobal solution or blow up in finite time 
solution), see for instance [3,5,7] and the references therein. Henceforth, (S(t))t≥0 denotes the 
heat semigroup with the Dirichlet condition on the boundary.

When � is a bounded domain and f = g ≡ 1, problem (1) was considered in [3]. We denote 
ϕ1 as the first eigenfunction of the Laplacian operator associated to the first eigenvalue λ1 > 0 in 
H 1

0 (�). We assume that 
∫
�

ϕ1(x)dx = 1.

Theorem 1.1 ([3]). Let � ⊂R
N be a bounded domain, f = g ≡ 1, p, q, r, s > 0 and

D = (1 − r)(1 − s) − pq. (3)

(i) If r > 1 or s > 1 or D < 0, then problem (1) admits both global and nonglobal solution. 
Moreover,
(a) If u0 ≥ Cϕ1, v0 ≥ Cϕ1 for C > 0 sufficiently large then the solution of problem (1) is 

nonglobal.
(b) If u0 ≤ ϕa, v0 ≤ ϕb with a and b suitably chosen, then the solution of problem (1) is 

global.
(ii) If r < 1, s < 1 and D ≥ 0, then all solutions of problem (1) are global.

The situation is more delicate when � is the whole space.

Theorem 1.2 ([7]). Let � = R
N , f = g ≡ 1, pq > 0 and r + p ≤ q + s. Assume that (u, v) is 

not of the form (u, 0) or (0, v) so that u > 0 and v > 0 on (0, T ).

(i) Suppose that r > 1.
(a) If (r + p − 1)−1 < N/2, then problem (1) has both global and nonglobal solutions.
(b) If (r + p − 1)−1 ≥ N/2, then every nontrivial solution of problem (1) is nonglobal.
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