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Abstract

We consider the incompressible inhomogeneous Navier–Stokes equations with constant viscosity coeffi-
cient and density which is bounded and bounded away from zero. We show that the energy balance relation 
for this system holds for weak solutions if the velocity, density, and pressure belong to a range of Besov 
spaces of smoothness 1/3. A density-dependent version of the classical Kármán–Howarth–Monin relation 
is derived.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the density-dependent incompressible Navier–Stokes equations:

∂t (ρu) + div(ρu ⊗ u) − μ�u = −∇p + ρf, (1)

∂tρ + div(ρu) = 0, (2)

∇ · u = 0. (3)
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Here u(x, t) represents the d-dimensional velocity, f (x, t) is an external force (with values 
in R

d ), p(x, t) is the pressure, ρ(x, t) is the density, and μ is the viscosity coefficient (which 
we take to be constant). We consider (1)–(3) for x ∈ T

d and t ≥ 0. It is known, see [11,10,13], 
that if u0 is divergence-free and square-integrable, ρ ≤ ρ0 ≤ ρ for some positive constants ρ
and ρ, and if f ∈ L2([0, T ]; L2(Td)), then there exists a Leray–Hopf type global weak solution 
to the system (ρ, u) such that ρ ≤ ρ ≤ ρ, u ∈ L2([0, T ]; H 1(Td)), and (ρ, u) satisfies the energy 
inequality

E(t) − E(0) ≤ −μ

t∫
0

‖∇u‖2
L2(Td )

ds

+
t∫

0

∫
Td

ρu · f dx ds, where E(s) = 1

2

∫
Td×{s}

ρ|u|2 dx. (4)

Fluids with variable distribution of density arise in many physical contexts. In particular, they 
appear prominently in Rayleigh–Taylor mixing when a heavier layer fluid on top of lighter one 
gets mixed under the force of gravity, creating a non-homogeneous turbulent layer. Although 
an analogue of the classical Kolmogorov theory of turbulence for non-homogeneous fluids has 
not yet been developed, it appears to be evident that under proper self-similarity assumptions on 
the velocity increments δu = u(r + �) − u(r) and density δρ a limited level of regularity would 
be expected of u and ρ in the limit of vanishing viscosity. Such regularity should allow for a 
residual amount of energy to be dissipated in the limit by analogy with the Kolmogorov’s 0th 
law of turbulence, see [9]. Mathematical study of the question of what this critical regularity 
might be has been a subject of many recent publications centered around the so-called Onsager 
conjecture, which states that for the pure Euler equation Hölder exponent 1/3 gives a threshold 
regularity between energy conservation and existence of dissipative solutions that do not con-
serve energy (see [6,4,2,12,1,5]). In this paper we address the same question in the context of the 
full density-dependent forced system (1)–(3) with or without viscosity.

Let us recall that a weak solution to (1)–(3) is a triple (ρ, u, p) ∈ L∞
t,x × L2

t,x ×D′ (D′ is the 
space of distributions) such that for any triple of smooth test functions (η, ψ, γ ), one has

∫
Td×{s}

ρu · ψ dx

∣∣∣∣t
0
−

t∫
0

∫
Td

(
ρu · ∂sψ+(ρu ⊗ u) : ∇ψ + p divψ

)
dx ds

= μ

t∫
0

∫
Td

u · �ψ dx ds +
t∫

0

∫
Td

ρf · ψ dx ds,

(5)

∫
Td×{s}

ρη dx

∣∣∣∣t
0
=

t∫
0

∫
Td

(ρ∂sη + (ρu · ∇)η) dx ds, (6)

∫
Td

u · ∇γ = 0. (7)
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