

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 261 (2016) 3941-3963

www.elsevier.com/locate/jde

Pointwise nonlinear stability of nonlocalized modulated periodic reaction—diffusion waves

Soyeun Jung a,1, Kevin Zumbrun b

^a Kongju National University, Gongju-si, Chungcheongnamdo 314-701, Republic of Korea
^b Indiana University, Bloomington, IN 47405, USA

Received 7 May 2016

Available online 8 July 2016

Abstract

In this paper, extending previous results of [2], we obtain pointwise nonlinear stability of periodic traveling reaction—diffusion waves, assuming spectral linearized stability, under nonlocalized perturbations. More precisely, we establish pointwise estimate of nonlocalized modulational perturbation under a small initial perturbation consisting of a nonlocalized modulation plus a localized perturbation decaying algebraically. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider a system of reaction-diffusion equations

$$u_t = u_{xx} + f(u), \tag{1.1}$$

where $(x, t) \in \mathbb{R} \times \mathbb{R}^+$, $u \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^n$ sufficiently smooth. We assume that $u(x, t) = \bar{u}(x - ct)$ is a traveling wave solution of the system (1.1) with a constant speed c and the profile $\bar{u}(\cdot)$ satisfies $\bar{u}(\cdot) = \bar{u}(\cdot + 1)$. In other words, $\bar{u}(x)$ is a stationary 1-periodic solution of the PDE

E-mail addresses: soyjung@kongju.ac.kr (S. Jung), kzumbrun@indiana.edu (K. Zumbrun).

This work was supported by the research grant of the Kongju National University in 2015.

$$u_t = u_{xx} + cu_x + f(u). (1.2)$$

In [2], the first author established pointwise Green function bounds on the linearized operator about the underlying solution \bar{u} and obtained pointwise nonlinear stability of \bar{u} by estimating the localized modulational perturbation $v(x,t) = \tilde{u}(x - \psi(x,t), t) - \bar{u}(x)$ $(h_0 = \psi(x,0) = 0)$ under small initial perturbations $v(x,0) = \tilde{u}(x,0) - \bar{u}(x)$ decaying algebraically for nearby solutions \tilde{u} of (1.2).

In the present paper, we study the pointwise nonlinear stability of \bar{u} of (1.2) under small perturbations consisting of a nonlocalized modulation $(h_0(x) = \psi(x, 0))$ does not decay algebraically, but $\partial_x h_0$ decays algebraically) plus a localized perturbation $v(x,0) = \tilde{u}(x-h_0(x),0) - \tilde{u}(x)$ (v(x,0)) decays algebraically). Johnson, Noble, Rodrigues and Zumbrun showed L^p -nonlinear stability under such nonlocalized modulational perturbations $(h_0 \notin L^1)$, but $\partial_x h_0 \in L^1$) for systems of reaction-diffusion equations in [4] and of conservation laws in [6]. Sandstede, Scheel, Schneider, and Uecker obtained similar results by rather different methods for systems of reaction-diffusion equations in [10].

Similarly as in [4,6], here, we determine an appropriate nonlocalized modulation $\psi(x,t)$ by an adaption of the basic nonlinear iteration scheme developed in [7]. However, in the absence of cancellation estimates afforded by Hausdorff-Young and Parseval inequalities, we find it necessary to decompose the solution a bit differently than was done in [4] in order to estimate sharply the key "modulation" part of the linearized solution operator in response to modulational-type data (see Remark 3.2), and to estimate this modulational part essentially "by hand." This is the main new difficulty in our analysis beyond those carried out in [2,4].

1.1. Preliminaries

We first linearize the PDE (1.2) about a stationary 1-periodic solution \bar{u} so that we obtain the eigenvalue problem

$$\lambda v = Lv := (\partial_x^2 + c\partial_x + df(\bar{u}))v, \tag{1.3}$$

operating on $L^2(\mathbb{R})$ with densely defined domains $H^2(\mathbb{R})$. Here, v is considered as a perturbation of \bar{u} defined by $v(x,t) = \tilde{u}(x,t) - \bar{u}(x)$ for nearby solutions \tilde{u} . To characterize the $L^2(\mathbb{R})$ -spectrum of L (denoted by $\sigma_{L^2(\mathbb{R})}(L)$), we rewrite (1.3) as the following linear ODE system

$$V_x = \mathbb{A}V$$
, where $V = \begin{pmatrix} v \\ v_x \end{pmatrix}$ and $\mathbb{A} = \mathbb{A}(x, \lambda) = \begin{pmatrix} 0 & I \\ \lambda I - df(\bar{u}) & -cI \end{pmatrix}$. (1.4)

Since all coefficients of L are 1-periodic, $\mathbb{A}(x+1,\lambda) = \mathbb{A}(x,\lambda)$; so by Floquet theory, the fundamental matrix solution $\Phi(x, \lambda)$ of the linear system (1.4) is

$$\Phi(x,\lambda) = P(x,\lambda)e^{R(\lambda)x},$$

where $R(\lambda) \in \mathbb{C}^{n \times n}$ is a constant matrix and $P(x,\lambda) \in \mathbb{C}^{n \times n}$ is a periodic matrix, $P(x,\lambda) =$ $P(x+1,\lambda)$. In fact, for each eigenvalue μ (referred to as the Floquet exponent) of $R(\lambda)$, there is a solution to (1.4) of the form $V(x, \lambda) = e^{\mu x} W(x, \lambda)$, where W is 1-periodic in x. Thus, any nontrivial solution V to the system (1.4) does not lie in $L^2(\mathbb{R})$, which means that the $L^2(\mathbb{R})$ -spectrum

Download English Version:

https://daneshyari.com/en/article/4609431

Download Persian Version:

https://daneshyari.com/article/4609431

<u>Daneshyari.com</u>