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Abstract

Fractional matrix exponentials are introduced, which extend the usual matrix exponential involving or-
dinary derivatives to the case of fractional derivative operators. Two fractional analogues are defined,
corresponding to the Caputo and Riemann-Liouville fractional derivatives. Moreover, explicit methods
similar to Putzer’s method for calculating the usual matrix exponential are developed for these fractional
matrix exponentials.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Many natural processes can be modeled by systems of linear, first-order, ordinary differential
equations (ODEs) of the form

X' (t) = Ax(1), x(0) = xo, (1.1)

where ¢ > 0 usually represents time, A is an n x n real (or complex) matrix, x(¢) is an n x 1
vector that represents the state of the system at time ¢, and X is an n x 1 vector that prescribes
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the initial state. It is well known that the unique solution of the initial-value problem (IVP) given
in (1.1)1s

X(1) = exp(tA)xo,

where exp(fA) is the matrix exponential defined formally as
t 2, .
exp(tA):I—{—FA-}-EA 4= ZAJ

and I is the n x n identity matrix. Thus the solution of the IVP (1.1) reduces to the calculation of
a matrix exponential.
If D =diag(dy, ..., dy,) is a diagonal matrix, then

d‘t, e ed”t).

exp(tD) = diag(e

Furthermore, if A is diagonalizable, i.e., P IAP=D = diag(dy, ..., d,) for some invertible
n X n matrix P, then

exp(tA) = Pexp(rD)P~ .

More generally, if P !AP = J, where J is the Jordan canonical form of an arbitrary matrix A,
then the calculation of exp(A) is equivalent to the calculation of exp(¢J), which is not always
straightforward.

Putzer [25] proposed an algorithm for calculating the matrix exponential that avoids the use
of the Jordan canonical form but requires the solution of a recursive system of linear ODEs.
The procedure is as follows. Let Ag,..., A, denote the eigenvalues of A. Define the matri-
ces Py, Py, ..., P, by

Po=I, Pi=A—MD---A—MD, k=1,....n.

It follows from the Cayley—Hamilton theorem that P,, = O, where O is the n x n zero matrix.
Let y1, ..., y, be n functions of ¢ that satisfy the IVP

i =ry@, »O0=1,
Vw1 ) =M1 Yir1(0) + ye (), w100 =0, k=1,...,n—1.
Then a finite expansion of the matrix exponential is

n—1

exp(tA) =Y yiy1(t)Py.
k=0

Putzer’s method is generic in the sense that it can be applied to any square matrix and even with
repeated eigenvalues.
It is easily verified that the matrix-valued function ®(7) = exp(tA) satisfies the IVP

' (t)=Ad(r), ®0)=1L
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