# Periodic solutions of a perturbed Kepler problem in the plane: From existence to stability 

Alberto Boscaggin ${ }^{a}$, Rafael Ortega ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, I-10123 Torino, Italy<br>${ }^{\text {b }}$ Departamento de Matemática Aplicada, Universidad de Granada, E-18071 Granada, Spain

Received 26 January 2016; revised 1 May 2016
Available online 17 May 2016


#### Abstract

The existence of elliptic periodic solutions of a perturbed Kepler problem is proved. The equations are in the plane and the perturbation depends periodically on time. The proof is based on a local description of the symplectic group in two degrees of freedom. © 2016 Elsevier Inc. All rights reserved.


MSC: 37J25; 37J45
Keywords: Lyapunov stability; Kepler problem; Periodic solution; Poincaré coordinates; Averaging method; Symplectic matrix

## 1. Introduction

Perturbations of the Kepler problem appear naturally in Celestial Mechanics. These equations are relevant for applications but they also have an intrinsic mathematical interest. In particular the existence and stability of periodic solutions have been discussed by a large number of authors. After Poincaré these questions are usually treated via the averaging method. We refer to the papers $[7,11]$ for results on the autonomous case and for useful lists of references. We will be interested in periodic time dependent perturbations, a class of equations already considered by

[^0]Fatou in [5]. More recently Ambrosetti and Coti Zelati treated in [1] a class of periodic perturbations with symmetries and presented the averaging method in a variational framework.

We are going to consider the perturbed Kepler problem in the plane

$$
\begin{equation*}
\ddot{x}=-\frac{x}{|x|^{3}}+\varepsilon \nabla_{x} U(t, x), \quad x \in \mathbb{R}^{2} \backslash\{0\}, \tag{1}
\end{equation*}
$$

where $\varepsilon$ is a small parameter and $U$ is a smooth function with period $2 \pi$ in the variable $t$. In principle $U$ could also depend on $\varepsilon$ but we have eliminated this dependence for simplicity. We are interested in the stability properties of $2 \pi$-periodic solutions obtained as a continuation from the integrable case $\varepsilon=0$. These solutions are understood without collisions and so the restriction to an interval of length $2 \pi$, say $x:[0,2 \pi] \rightarrow \mathbb{R}^{2} \backslash\{0\}$, defines a loop in $\mathbb{R}^{2} \backslash\{0\}$. In particular, each $2 \pi$-periodic solution has a winding number $N \in \mathbb{Z}$. For $\varepsilon=0$ the system has $2 \pi$-periodic solutions with any winding number $N \neq 0$. They are produced by the elliptic (or circular) orbits with major half-axis $a_{N}=|N|^{-2 / 3}$. This quantity appears as a consequence of Kepler's third law when we look for solutions with minimal period $\frac{2 \pi}{|N|}$. The sign of $N$ corresponds to the orientation of the orbit. Let $\Sigma_{N}$ denote the set of initial conditions $\left(x_{0}, y_{0}\right)$ in $\left(\mathbb{R}^{2} \backslash\{0\}\right) \times \mathbb{R}^{2}$ producing $2 \pi$-periodic solution with winding number $N \neq 0$. In view of the relationship between the energy and the major axis of a Keplerian ellipse we can describe $\Sigma_{N}$ by the equations

$$
\frac{1}{2}\left|y_{0}\right|^{2}-\frac{1}{\left|x_{0}\right|}=-\frac{1}{2} N^{2 / 3}, \quad N\left(x_{01} y_{02}-x_{02} y_{01}\right)>0
$$

Later we shall see that $\Sigma_{N}$ is a three dimensional manifold diffeomorphic to $\mathbb{S}^{1} \times \mathbb{D}$, where $\mathbb{D}$ is the unit open disk.

Let $\phi_{t}\left(x_{0}, y_{0}\right)=\left(x\left(t ; x_{0}, y_{0}\right), y\left(t ; x_{0}, y_{0}\right)\right)$ be the flow associated to the Kepler problem

$$
\dot{x}=y, \quad \dot{y}=-\frac{x}{|x|^{3}} .
$$

Then $\Sigma_{N}$ is invariant under $\phi_{t}$ and we can average $U(t, x)$ with respect to the flow over the manifold $\Sigma_{N}$ to obtain the function

$$
\Gamma_{N}: \Sigma_{N} \rightarrow \mathbb{R}, \quad \Gamma_{N}\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} U\left(t, x\left(t ; x_{0}, y_{0}\right)\right) d t
$$

Any continuation from $\varepsilon=0$ of $2 \pi$-periodic solutions with winding number $N$ must emanate from the set of critical points of $\Gamma_{N}$. Conversely, if the critical point satisfies some nondegeneracy condition, such a continuation always exists. This type of result can be obtained using an abstract variational framework as in [2] or by a more traditional averaging method. We will follow the second alternative and then it is convenient to employ a system of coordinates which is natural to the equation for $\varepsilon=0$. Since the Kepler problem is integrable the action-angle variables seem a natural choice (see [6]). These are the well-known Delaunay variables and they work well for the continuation from positive eccentricity. However these coordinates present a blow-up at eccentricity $e=0$ and they do not seem suitable to deal with the continuation from circular solutions. Poincaré proposed a variant of the Delaunay variables which solves this difficulty (see [9] and [4]). They are of the form ( $\lambda, \Lambda, \eta, \xi$ ) with $\lambda \in \mathbb{S}^{1}, \Lambda>0$ and $\eta^{2}+\xi^{2}<2 \Lambda$.

# https://daneshyari.com/en/article/4609456 

Download Persian Version:
https://daneshyari.com/article/4609456

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: alberto.boscaggin@unito.it (A. Boscaggin), rortega@ugr.es (R. Ortega).

