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Abstract

The existence of elliptic periodic solutions of a perturbed Kepler problem is proved. The equations are 
in the plane and the perturbation depends periodically on time. The proof is based on a local description of 
the symplectic group in two degrees of freedom.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Perturbations of the Kepler problem appear naturally in Celestial Mechanics. These equations 
are relevant for applications but they also have an intrinsic mathematical interest. In particular 
the existence and stability of periodic solutions have been discussed by a large number of au-
thors. After Poincaré these questions are usually treated via the averaging method. We refer to 
the papers [7,11] for results on the autonomous case and for useful lists of references. We will be 
interested in periodic time dependent perturbations, a class of equations already considered by 
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Fatou in [5]. More recently Ambrosetti and Coti Zelati treated in [1] a class of periodic perturba-
tions with symmetries and presented the averaging method in a variational framework.

We are going to consider the perturbed Kepler problem in the plane

ẍ = − x

|x|3 + ε ∇xU(t, x), x ∈R
2 \ {0}, (1)

where ε is a small parameter and U is a smooth function with period 2π in the variable t . In 
principle U could also depend on ε but we have eliminated this dependence for simplicity. We 
are interested in the stability properties of 2π -periodic solutions obtained as a continuation from 
the integrable case ε = 0. These solutions are understood without collisions and so the restriction 
to an interval of length 2π , say x : [0, 2π ] → R

2 \ {0}, defines a loop in R2 \ {0}. In particular, 
each 2π -periodic solution has a winding number N ∈ Z. For ε = 0 the system has 2π -periodic 
solutions with any winding number N �= 0. They are produced by the elliptic (or circular) orbits 
with major half-axis aN = |N |−2/3. This quantity appears as a consequence of Kepler’s third 
law when we look for solutions with minimal period 2π

|N | . The sign of N corresponds to the 
orientation of the orbit. Let �N denote the set of initial conditions (x0, y0) in 

(
R

2 \ {0})× R
2

producing 2π -periodic solution with winding number N �= 0. In view of the relationship between 
the energy and the major axis of a Keplerian ellipse we can describe �N by the equations

1

2
|y0|2 − 1

|x0| = −1

2
N2/3, N (x01y02 − x02 y01) > 0.

Later we shall see that �N is a three dimensional manifold diffeomorphic to S1 ×D, where D is 
the unit open disk.

Let φt (x0, y0) = (x(t; x0, y0), y(t; x0, y0)) be the flow associated to the Kepler problem

ẋ = y, ẏ = − x

|x|3 .

Then �N is invariant under φt and we can average U(t, x) with respect to the flow over the 
manifold �N to obtain the function

�N : �N → R, �N(x0, y0) = 1

2π

2π∫
0

U (t, x(t;x0, y0)) dt.

Any continuation from ε = 0 of 2π -periodic solutions with winding number N must emanate 
from the set of critical points of �N . Conversely, if the critical point satisfies some non-
degeneracy condition, such a continuation always exists. This type of result can be obtained 
using an abstract variational framework as in [2] or by a more traditional averaging method. 
We will follow the second alternative and then it is convenient to employ a system of coordinates 
which is natural to the equation for ε = 0. Since the Kepler problem is integrable the action-angle 
variables seem a natural choice (see [6]). These are the well-known Delaunay variables and they 
work well for the continuation from positive eccentricity. However these coordinates present a 
blow-up at eccentricity e = 0 and they do not seem suitable to deal with the continuation from 
circular solutions. Poincaré proposed a variant of the Delaunay variables which solves this diffi-
culty (see [9] and [4]). They are of the form (λ, �, η, ξ) with λ ∈ S

1, � > 0 and η2 + ξ2 < 2�. 
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