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Abstract

We study the free boundary Euler equations with surface tension in three spatial dimensions, showing
that the equations are well-posed if the coefficient of surface tension is positive. Then we prove that under
natural assumptions, the solutions of the free boundary motion converge to solutions of the Euler equations
in a domain with fixed boundary when the coefficient of surface tension tends to infinity.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the initial value problem for the motion of an incompressible inviscid fluid with free
boundary whose equations of motion are given in Lagrangian coordinates by (see below for the
equations in Eulerian coordinates)

f=—Vpon in Q, (a)
div(u) =0 in n(RQ), (b) .0
Plagy =KkA on 9n(2), (c)
n(0) =id, n(0) = uo, (d)

where Q is a domain in R”; 5 (¢, -) is, for each ¢, a volume preserving embedding n(¢) : 2 — R”
representing the fluid motion, with ¢ thought of as the time variable (1(¢, x) is the position at
time ¢ of the fluid particle that at time zero was at x); “ " denotes derivative with respect to ¢;
Q@) =n)(RQ); u: () —> R" is a vector field on 2(¢) defined by u =1 o n_l (it represents
the fluid velocity); A is the mean curvature of the boundary of the domain Q(¢); p is a real
valued function on 2(¢) called the pressure; finally, « is a non-negative constant known as the
coefficient of surface tension. id denotes the identity map, u¢ is a given divergence free vector
field on €2, and div means divergence. The unknowns are the fluid motion 7 and the pressure p,
but notice that the system (1.1) is coupled in a non-trivial fashion in the sense that the other
quantities appearing in (1.1), namely u, A, and (), depend explicitly or implicitly on # and p.

With suitable assumptions, we shall prove the following result, concerning the existence of
solutions to (1.1) and the behavior of solutions when the coefficient of surface tension is large,
i.e., in the limit k — co. A precise statement is given in Theorem 1.2 below.

Theorem (Main Result). (See Theorem 1.2 for precise statements.) Under appropriate condi-
tions on the initial condition ug and on 02, we have:

1) Ifk > 0, then (1.1) is well posed.
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