
Linked instruction caches for enhancing power efficiency of embedded
systems

Chang-Jung Ku, Ching-Wen Chen ⇑, An Hsia, Chun-Lin Chen
Department of Information Engineering and Computer Science, Feng Chia University, Taichung City 40724, Taiwan

a r t i c l e i n f o

Article history:
Available online 15 February 2014

Keywords:
Instruction cache
Low power
Branch target buffer
Embedded systems

a b s t r a c t

The power consumed by memory systems accounts for 45% of the total power consumed by an embedded
system, and the power consumed during a memory access is 10 times higher than during a cache access.
Thus, increasing the cache hit rate can effectively reduce the power consumption of the memory system
and improve system performance. In this study, we increased the cache hit rate and reduced the cache-
access power consumption by developing a new cache architecture known as a single linked cache (SLC)
that stores frequently executed instructions. SLC has the features of low power consumption and low
access delay, similar to a direct mapping cache, and a high cache hit rate similar to a two way-set asso-
ciative cache by adding a new link field. In addition, we developed another design known as a multiple
linked caches (MLC) to further reduce the power consumption during each cache access and avoid unnec-
essary cache accesses when the requested data is absent from the cache. In MLC, the linked cache is split
into several small linked caches that store frequently executed instructions to reduce the power con-
sumption during each access. To avoid unnecessary cache accesses when a requested instruction is not
in the linked caches, the addresses of the frequently executed blocks are recorded in the branch target
buffer (BTB). By consulting the BTB, a processor can access the memory to obtain the requested instruc-
tion directly if the instruction is not in the cache. In the simulation results, our method performed better
than selective compression, traditional cache, and filter cache in terms of the cache hit rate, power con-
sumption, and execution time.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Embedded systems are essentially application-specific micro-
computers. Embedded system products are used widely nowadays,
such as mobile phones, GPS receivers, and MP3 players. Most
embedded systems are designed as mobile devices or are embed-
ded in other devices where the power supply is mainly through
batteries. Therefore, in addition to performance and cost consider-
ations, power consumption is a significant factor. Thus, it is impor-
tant to design a power-saving embedded system for prolonging the
battery life of such products.

According to previous studies, memory system accesses account
for about 45% [6,11,21–23] of the total power consumed by embed-
ded systems. Thus, if the power consumed by the memory system
were decreased, the total power consumed by a system would de-
crease significantly. According to [8], the power consumed for each
instance of memory access is 8–10 times that consumed for each in-

stance of cache access. Therefore, if the number of instances of
memory access were to decrease, the power consumption of an
embedded system would improve greatly.

In previous studies, many researchers have aimed to reduce the
power consumption of memory systems to deliver power savings
[1–5,7–8,10,15–18,21,24–29]. We categorize these works into
three types: (1) adding a small cache between the CPU and the
L1 cache to reduce the access power [2,15–16,24–25]. Previous
authors [15] have stated that although the additional small cache
can reduce memory system power consumption by 40–50%, it
has a higher miss rate because it is too small to capture the locality
of the executed programs. (2) Increasing the degree of cache asso-
ciativity [10,21] to reduce the number of conflict misses also in-
creases the number of tag comparisons, which increases the
power consumption. Consequently, the power consumed for each
instance of cache access increases as the degree of cache associa-
tivity increases. (3) Using a compression cache to reduce the num-
ber of memory accesses. [1,3–5,7–8,17–18,26–29]. However, this
method incurs extra power and performance penalties when
decompressing the instructions fetched from the compression
cache. In addition, the addresses of the compressed instructions

http://dx.doi.org/10.1016/j.micpro.2014.01.006
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +886 424517250x3728.
E-mail addresses: p9522050@fcu.edu.tw (C.-J. Ku), chingwen@fcu.edu.tw

(C.-W. Chen), p9943324@fcu.edu.tw (A. Hsia), m9806590@fcu.edu.tw (C.-L. Chen).

Microprocessors and Microsystems 38 (2014) 197–207

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.01.006&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.01.006
mailto:p9522050@fcu.edu.tw
mailto:chingwen@fcu.edu.tw
mailto:p9943324@fcu.edu.tw
mailto:m9806590@fcu.edu.tw
http://dx.doi.org/10.1016/j.micpro.2014.01.006
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


differ from the original instructions so it needs to translate an ad-
dress before accessing the compression cache, which leads to extra
power consumption.

According to the above analysis, the following problems should
be considered when designing a power-aware cache-memory hier-
archy: the cache hit rate, power consumption during one cache ac-
cess, and avoidance of address translation. In this paper, we propose
a new cache architecture called single linked cache (SLC), which ad-
dresses these problems to deliver power savings. First, a reference
table is used to store the frequently executed instructions and in-
crease the hit rate. We also provide a mapping relationship between
the addresses and the frequently executed instructions in the refer-
ence table so a processor can fetch the requested instructions from
the table without address translation. Second, we reduce the power
consumption when accessing the reference table by using a low
associative strategy in the reference table, while a mechanism of
entry linkage is used to solve conflict misses due to low associativ-
ity. Finally, although frequently executed instructions comprise
10–20% of the total instructions in a program, only part of the fre-
quently executed instructions may be used during a short period
of time, i.e., not all frequently executed instructions are used during
a short period. Thus, to further reduce the power consumption dur-
ing a single access to the frequently executed instruction reference
table, we designed a multiple linked caches (MLC) to reduce the ac-
cess power. In addition, to avoid unnecessary cache accesses when
a requested instruction is not in the linked caches, the addresses of
the frequently executed blocks are also recorded in the branch tar-
get buffer (BTB). By consulting BTB, a processor can access the
memory to obtain the requested instruction directly if the instruc-
tion is not in the cache, which avoids unnecessary cache access.

This paper is organized as follows. Section 2 reviews previous
related works. Section 3 explains how the proposed SLC and MLC
work. Section 4 presents the experimental results. In Section 5,
we conclude this paper.

2. Related works

Previous studies of power-saving embedded systems have fo-
cused on reducing the power consumption of the processors and
the memory system interface, mainly by reducing the memory ac-
cess times and the power consumption of the memory bus. In addi-
tion to saving power, reducing the number of memory accesses can
also reduce the execution time. Therefore, Benini and Yoshida pro-
posed selective compression to reduce the number of memory
accesses [4,29]. Benini [29] proposed a method that compresses
frequently executed instructions and packages multiple com-
pressed instructions into a virtual instruction. When a processor
fetches a virtual instruction from the cache, the processor can
decompress it to obtain multiple instructions and reduce the num-
ber of memory accesses. In [4], Yoshida proposed a method for
storing frequently executed instructions in the memory without
packaging. When a compressed instruction is fetched, the bus
switches from its original 32-bit transmission to 8-bit transmission
to reduce the power consumption.

These studies mainly reduced the number of memory accesses
by compressing frequently executed instructions. However, to
decompress the compressed instructions, the system must main-
tain a frequently executed instruction reference table that stores
the original frequently executed instructions. When a virtual
instruction or a compressed instruction is fetched, it can be decom-
pressed to obtain multiple instructions or a single uncompressed
instruction by looking up the reference table. Due to instruction
compression, the address of an instruction in the memory is differ-
ent from the instruction address issued by the processor. There-
fore, the system needs a look-ahead table (LAT) to record the

mapping relationship between the address of a compressed
instruction in the memory and the address of an original instruc-
tion. Thus, there are overheads when accessing the LAT before
fetching an instruction from the memory.

Other researchers [2,15–16,24–25] have suggested the design
where a large cache is replaced by several small caches to save
power when accessing the cache because the power consumption
when accessing a large cache is considerably larger than that when
accessing a small one. In these approaches, researchers added a
small cache between the processor and the cache, which is known
as a filter cache [15]. When a processor sends an address request,
the filter cache is accessed first with lower power requirements
to fetch the requested instruction if the access is a hit in the filter
cache. If a miss occurs in the filter cache, the cache is accessed. Uti-
lizing a filter cache can reduce the power consumption of accesses
but it does not improve the access time because there is not much
difference between the access time with a large cache and a small
cache. The limited size of the filter cache also results in significant
numbers of conflict misses, which degrade the system perfor-
mance. Besides, Kim [14] added a small cache in the memory
system called LPT-cache for capturing the most cache accesses to
reduce power consumption by utilizing LPT-cache. They store the
basic blocks of instructions into LPT-cache instead of cache lines
in the traditional mapping way. In addition, the related informa-
tion of the stored basic blocks is recorded in the branch target
buffer, which is offered to the processor to fetch needed instruc-
tions from LPT-cache.

Zhang [30] pointed out that the utilization of the sets in a cache
is non-uniform to result in some sets are seldom used to decrease
the cache hit rates. Thus, Zhang proposed a new cache architecture
called Efficient Cache to modify decoders in caches to balance the
utilization of each set to improve cache hit rates and reduce the
power consumption of memory system.

3. Proposed method

In this chapter, we introduce our novel system known as a
linked cache that reduces the power consumption of the memory
system. The proposed linked cache can increase the cache hit rate
and avoid address translation, while also reducing the power con-
sumption. In addition, a direct mapping strategy is used in the pro-
posed linked cache to reduce the access power while a link field is
added to a cache block to reduce conflict misses.

To further reduce the power consumption, we designed multi-
ple linked caches where the linked cache is divided into several
parts to reduce the access power. To avoid unnecessary cache
accesses when the requested instructions are not in the linked ca-
ches, the addresses of the frequently executed instruction blocks
are recorded in the branch target buffer (BTB). By consulting BTB,
a processor can access the memory to obtain the requested instruc-
tion directly if the requested instruction is not in the cache, which
avoids unnecessary cache access. Section 3.1 explains the design of
the single linked cache (SLC) and Section 3.2 describes the design
of multiple linked caches (MLC).

3.1. Design of the single linked cache (SLC)

In this section, we explain the design of our proposed SLC. To in-
crease the cache hit rates and avoid address translation before
fetching an instruction, we analyzed trace files to store the instruc-
tions of the most executed addresses in the linked cache using di-
rect mapping and linking. Unlike previous studies [3] that selected
the most executed instructions as the frequently executed instruc-
tions and that used cost address translation before accessing these
frequently executed instructions, we collected the corresponding

198 C.-J. Ku et al. / Microprocessors and Microsystems 38 (2014) 197–207



Download English Version:

https://daneshyari.com/en/article/460950

Download Persian Version:

https://daneshyari.com/article/460950

Daneshyari.com

https://daneshyari.com/en/article/460950
https://daneshyari.com/article/460950
https://daneshyari.com

