
On the global optimization of checking sequences for finite state
machine implementations

Monika Kapus-Kolar ⇑
Jožef Stefan Institute, Department of Communication Systems, Jamova 39, SI-1111 Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Available online 6 February 2014

Keywords:
Conformance testing
Deterministic finite state machine
Checking sequence construction
Optimization

a b s t r a c t

A checking sequence for a given domain of deterministic finite state machine implementations is an input
sequence for which exactly the non-faulty members of the domain produce a non-faulty response. In the
paper, we reconsider a popular family of methods which construct a checking sequence by performing its
digraph-based global optimization. Recently, it was demonstrated that many of the methods are unsafe.
As a remedy, a simple, but sufficient set of additional constraints on the structure of the employed
digraph was introduced. In this paper, we show that the constraints sometimes ban also some of those
originally considered checking sequence candidates which are sound. To safely restore the original power
of the checking sequence construction approach, we perform its thorough re-engineering. This results in
a very transparent and flexible generic method from which various methods of practical interest, both
new ones and analogues of the traditional ones, can be derived simply by specialization.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a given deterministic finite state machine (DFSM), call it
specification, and a given domain of its implementations, a checking
sequence is an input sequence to which exactly the non-faulty
members of the domain respond as the DFSM would. The advan-
tage of complete test suites consisting of a small number of longer
sequences is that their application requires less or no resets of the
implementation under test and that they tend to have a better per-
formance on implementations outside their target domain [1]. On
the other hand, single-sequence complete test suites are the most
difficult to construct and optimize. Methods for their construction,
hence, tend to target very narrow domains.

In the paper, we reconsider a popular family of checking se-
quence construction methods [2–11] which assume that the spec-
ification and the target implementations are complete DFSMs
defined over the same input alphabet, that the specification is
strongly connected and possesses a distinguishing set and that
each of the target implementations has at most as many states as
the specification. For the checking sequence under construction,
the methods perform digraph-based global optimization. They start
by constructing a digraph in which each of the considered candi-
date checking sequences is represented as a specific walk whose

cost is the specified application cost of the sequence. In the di-
graph, the methods then look for one of the cheapest such walks.

The reason why we believe that the method family deserves
reconsideration is the following: Recently, it was demonstrated
that many of the methods are unsafe [12]. As a remedy, a simple,
but sufficient set of additional constraints on the structure of the
constructed digraph was introduced. We, however, discovered that
the solution is not satisfactory, for, as demonstrated in this paper,
the constraints sometimes ban also some of those originally con-
sidered checking sequence candidates which are sound. This indi-
cates that the checking sequence construction approach needs a
thorough re-engineering. We accomplish it in the rest of the paper,
in a way fully restoring the original power of the approach.

The re-engineering results in a very transparent and flexible
generic checking sequence construction method from which various
methods of practical interest, both new ones and analogues of
those of [2–11], can be derived simply by specialization. To make
the method even more flexible, so that it can consider an even lar-
ger class of candidate checking sequences, we make more flexible
also the employed templates for state recognizers and transition
implementation tests.

In the Sections 2–11, the new generic method is developed and
proven step-by-step, in a highly formal and structured way, as to
satisfy those diligent readers who seek deep understanding of
every detail of the method, for example for its safe direct use or
for the development of its new simple-to-use specializations. Each
of the Sections 4–11, however, starts with an informal summary, as

http://dx.doi.org/10.1016/j.micpro.2014.01.007
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Tel.: +386 1 477 35 31.
E-mail address: monika.kapus-kolar@ijs.si

Microprocessors and Microsystems 38 (2014) 208–215

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.01.007&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.01.007
mailto:monika.kapus-kolar@ijs.si
http://dx.doi.org/10.1016/j.micpro.2014.01.007
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


to provide an informal introduction for the detailed readers and to
satisfy also practitioners currently using the methods of [2–11] and
seeking just a general idea of the new method. The latter are
advised to read the sections only up to the phrase ‘‘Speaking
formally’’ and to refer to the Sections 2 and 3 only when needing
to refresh their memory about a technical term. For the detailed
readers, the two sections are indispensable for a proper start, for
they define the employed formal notation. Section 12 comprises
a discussion and conclusions.

In the following, let M denote the specification DFSM, N its
implementation under test, the term ‘‘input’’ a member of their
common input alphabet, D the distinguishing set of M selected
as the basis of checking sequence construction, and G the
constructed digraph.

2. Sequences and directed (multi)graphs

Let � denote an empty sequence. For a sequence �o ¼ o1; . . . ; ok,
let segð�oÞ denote the set of all its segments oi; . . . ; oj with
1 6 i 6 j 6 k and setð�oÞ the set of the objects present in the (multi)-
set fo1; . . . ; okg. For two sequences �o ¼ o1; . . . ; ok and �o0 ¼ o01; . . . ; o0k0 ,
let �o � �o0 denote their concatenation o1; . . . ; oko01; . . . ; o0k0 . For a se-
quence �o ¼ �o0 � �o00, let �o� �o00 denote �o0.

A directed (multi)graph H consists of a set vrðHÞ of vertices and a
set edðHÞ of directed edges which connect them. An edge e has an ini-
tial vertex initðeÞ, a final vertex finðeÞ, a label labðeÞ and a cost costðeÞ.
We will specify such an edge as ðinitðeÞ; finðeÞ; labðeÞ; costðeÞÞ. A di-
rected (multi)graph can have multiple edges with the same specifi-
cation. An edge having the same specification as some other is its
copy. A digraph is a directed (multi)graph in which no edge is a copy
of another. For a given directed (multi)graph vertex v, let inðvÞ de-
note the set of its incoming edges and outðvÞ the set of its outgoing
edges. A given directed (multi)graph H is edge-induced if
vrðHÞ ¼ [e2edðHÞfinitðeÞ; finðeÞg and symmetric if jinðvÞj ¼ joutðvÞj
for every vertex v in vrðHÞ. The cost of a given directed (multi)graph
H is Re2edðHÞcostðeÞ.

A walk of a given directed (multi)graph is a sequence of its con-
secutive edges. For a walk w ¼ e1; . . . ; ek, let initðwÞ denote its ini-
tial vertex initðe1Þ; finðwÞ its final vertex finðekÞ; vrðwÞ its vertex
set [16i6kfinitðeiÞ; finðeiÞg and costðwÞ its cost R16i6kcostðeiÞ. If
k ¼ 0; initðwÞ is supposed to be known from the context. If
ðk > 0Þ ^ ðinitðwÞ ¼ finðwÞÞ ^ ðjvrðwÞj ¼ kÞ, w is a cycle. A copy of
w is any directed (multi)graph walk e01; . . . ; e0k with e0i for every
1 6 i 6 k a copy of ei. A directed (multi)graph H is acyclic if it has
no cycle and strongly connected if for every two vertices v and v 0
in vrðHÞ, it has a walk w with ðinitðwÞ ¼ vÞ ^ ðfinðwÞ ¼ v 0Þ.

A reduction of a directed (multi)graph H is an edge-induced di-
rected (multi)graph H0 with edðH0Þ# edðHÞ. For a directed (multi)-
graph H and an edge set E # edðHÞ, let H½E� denote that reduction
of H whose edge set is E. A given directed (multi)graph is a compo-
nent of a directed (multi)graph H if it is its strongly connected
reduction and a reduction of no larger strongly connected reduc-
tion of H. A symmetric augmentation of an edge set E in an edge
set E0 is a symmetric edge-induced directed (multi)graph whose
edge set is E enhanced with zero or more copies of edges in E0.

3. The specification and its implementation under test

For an input x, let costðxÞ denote the cost of its application, pre-
sumably a non-zero positive real. The default costðxÞ is 1. The cost
costð�xÞ of a given input sequence �x ¼ x1; . . . ; xk is R16i6kcostðxiÞ.

A DFSM Q is a machine possessing a finite set stðQÞ of states in
which it might reside, among them its initial state initðQÞ, and a fi-
nite set trðQÞ of transitions which it is willing to execute. Every
transition in trðQÞ is an ðs; s0; x=yÞ with s the state from which it
is executed, x the input by which it is provoked, y the output which

it produces and s0 the state to which it leads, with no other transi-
tion defined for x applied in s. If for every state in stðQÞ, every input
has a corresponding transition in trðQÞ, Q is complete.

By executing a transition ðs; s0; x=yÞ, a DFSM executes from the
state s the input/output (I/O) x=y. The I/O sequences executable from
a given DFSM state s constitute its language lanðsÞ. For a given
DFSM Q, let lanðQÞ denote lanðinitðQÞÞ and iosðQÞ the I/O-sequence
set [s2stðQÞlanðsÞ. For an I/O sequence �z, let isð�zÞ denote its input
sequence.

A transition sequence of a given DFSM Q is a sequence of its con-
secutive transitions. For such a s, let initðsÞ denote its initial state,
finðsÞ its final state, isðsÞ its input sequence, iosðsÞ its I/O sequence
and costðsÞ its cost costðisðsÞÞ. If initðsÞ ¼ initðQÞ; s is rooted. If Q
has no other transition sequence s0 with ðiosðs0Þ ¼ iosðsÞÞ^
ðfinðs0Þ ¼ finðsÞÞ; s is invertible. For a zero-length transition se-
quence, the initial state is assumed to be known from the context.
A given DFSM Q is strongly connected if for every two states s and s0

in stðQÞ, it has a transition sequenceswith ðinitðsÞ ¼ sÞ^ ðfinðsÞ ¼ s0Þ.
In the following, we assume that stðMÞ is an fs1; . . . ; sng with

n > 1 and initðMÞ ¼ s1. For a transition ðsi; sj; x=yÞ in trðMÞ, let ti
x

be a shorter name.

Example 1. The M in Fig. 1 is a complete and strongly connected
DFSM operating over the input alphabet fa; bg. Its state set is
fs1; s2; s3; s4; s5g. Upon receiving a in s1, it emits 0 and enters s5. The
thereby executed transition t1

a , i.e. ðs1; s5; a=0Þ, is invertible,
whereas the transition sequence t1

bt1
a is not.

An I/O sequence �z is a unique I/O sequence (UIO) of (a specific
state s of) a given DFSM Q if s is the only state s0 in stðQÞ with
�z 2 lanðs0Þ. An I/O sequence �z is a backward UIO (BUIO) of (a specific
state s of) a given DFSM Q if s is the only state s0 in stðQÞ for which Q
has a transition sequence s with ðfinðsÞ ¼ s0Þ ^ ðiosðsÞ ¼ �zÞ. For a
DFSM state s, let uioðsÞ denote its UIO set and buioðsÞ its BUIO
set. For a UIO �z of M, let tsð�zÞ denote the only transition sequence
s of M with iosðsÞ ¼ �z.

If in two DFSM states, application of a given input sequence re-
sults in two different output sequences, the input sequence sepa-
rates the states. A distinguishing set of a given DFSM Q is a set
for every state s in stðQÞ comprising exactly one of its UIOs, a �zs,
with the property that for every two different states s and s0 in
stðQÞ, there is a separating input sequence that is a common prefix
of isð�zsÞ and isð�zs0 Þ. For a state si in stðMÞ, let Di denote the only
member of D \ lanðsiÞ.

For a transition sequence s of M, let nxtðsÞ denote the set con-
sisting of those transitions t in trðMÞ for which M has a transition
sequence s0 � t with iosðs0Þ a prefix of iosðsÞ and isðs0 � tÞ a prefix
of isðsÞ.

Example 2. In the M in Fig. 1, ab separates s1 and s4; b=0a=1 is a
UIO of s2, with tsðb=0a=1Þ ¼ t2

bt3
a ; a=0b=0 is a BUIO of s3 and

fa=0b=1; a=3; a=1; a=0b=0; a=2g is a distinguishing set. If D is the
distinguishing set, then D1 ¼ a=0b=1; D2 ¼ a=3; D3 ¼ a=1; D4 ¼
a=0b=0 and D5 ¼ a=2. nxt t1

at5
b

� �
¼ t1

a ; t
2
a ; t

3
a ; t

4
a ; t

5
a ; t

2
b ; t

5
b

� �
.

Fig. 1. An example M.

M. Kapus-Kolar / Microprocessors and Microsystems 38 (2014) 208–215 209



Download English Version:

https://daneshyari.com/en/article/460951

Download Persian Version:

https://daneshyari.com/article/460951

Daneshyari.com

https://daneshyari.com/en/article/460951
https://daneshyari.com/article/460951
https://daneshyari.com

