
Hardware support for memory protection in sensor nodes

Lanfranco Lopriore
Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa, Italy

a r t i c l e i n f o

Article history:
Available online 22 February 2014

Keywords:
Access right
Privileged mode
Memory protection
Sensor node

a b s t r a c t

With reference to the typical hardware configuration of a sensor node, we present the architecture of a
memory protection unit (MPU) designed as a low-complexity addition to the microcontroller. The MPU is
aimed at supporting memory protection and the privileged execution mode. It is connected to the system
buses, and is seen by the processor as a memory-mapped input/output device. The contents of the inter-
nal MPU registers specify the composition of the protection contexts of the running program in terms of
access rights for the memory pages. The MPU generates a hardware interrupt to the processor when it
detects a protection violation. The proposed MPU architecture is evaluated from a number of salient
viewpoints, which include the distribution, review and revocation of access permissions, and the support
for important memory protection paradigms, including hierarchical contexts and protection rings.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the architecture of a sensor node, stringent limitations exist
in terms of hardware complexity [1,17]. These include the absence
of a memory management unit for virtual to physical address
translation, and the lack of processor support for the two tradi-
tional execution modes, a kernel, privileged mode and a user mode
with memory access limitations [6,9,13]. This means that the oper-
ating system kernel and the user programs share a single address
space [2]. Each program has unlimited access to the whole primary
memory, as well as to all hardware resources, including input/out-
put devices, timers, sensors and actuators.

Owing to the lack of memory protection, program errors and
illegitimate program behavior have a potential for corrupting sys-
tem integrity [7]. The kernel is especially vulnerable. Every pro-
gram is in a position to access the information items strictly
reserved for the kernel, e.g. the cryptographic keys. Consequently,
an erroneous or deliberately harmful program can disrupt the
whole node [12,21]. In a sensor network, programs are not pre-
vented from using the cryptographic keys of the network protocols
[23]; damages may ensue that cross the node boundaries and span
a possibly large network fraction. The problem of programming er-
rors is exacerbated by the fact that the writing of application soft-
ware for sensor nodes is a quite complex task, owing to the
requirements for real-time response and support for concurrency,
the necessity to comply with different classes of sensors and actu-
ators, and the stringent limitations in terms of memory space, pro-
cessing power and energy consumption [4,16].

Partial solutions to these problems have been proposed in the
past. In [22] software execution in isolated compartments is ob-
tained by extending the microcontroller with ad hoc hardware in
the form of a memory protection unit (MPU) that partitions the
memory into up to 128 segments of variable size. The MPU is inter-
posed between the processor and the memory modules; it gener-
ates an interrupt to the processor in case an access violation is
detected. The variable segment size increases MPU hardware com-
plexity. No privileged mode of execution is supported. In [5] a form
of protection against control flow attacks is proposed that is based
on utilization of a separate stack, called the return stack, contained
in a memory location different from the normal execution stack.
The return stack is reserved for storage of the return addresses.
Protection of the return stack against accidental or deliberately
harmful alterations relies on dedicated hardware, and implies a
modification of the call and return machine instructions. In [7]
the problem of preventing memory corruption from erroneous
applications is dealt with in a hardware/software co-design ap-
proach to memory protection that relies on processor core
enhancements, e.g. in the implementation of the store, call and re-
turn instructions. A memory map checker is interposed between
the processor and the data memory, and is aimed at validating
the memory accesses at the hardware level. Protection domains
are supported, but no mechanism prevents an erroneous module
from corrupting its own state, which resides completely within a
single protection domain.

In contrast, with reference to the typical hardware configura-
tion of a sensor node, this paper presents the architecture of a
memory protection unit that has been designed by taking the fol-
lowing security and architectural requirements into account: (i)

http://dx.doi.org/10.1016/j.micpro.2014.01.004
0141-9331/� 2014 Elsevier B.V. All rights reserved.

E-mail address: l.lopriore@iet.unipi.it

Microprocessors and Microsystems 38 (2014) 226–232

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.01.004&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.01.004
mailto:l.lopriore@iet.unipi.it
http://dx.doi.org/10.1016/j.micpro.2014.01.004
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


the complexity of the MPU architecture should be low, so that the
cost of the additional hardware is kept to a minimum (e.g. much
lower than that of a traditional memory management unit with
the address translation portion removed); (ii) the inclusion of the
MPU into the existing system should imply no modification of
the architecture of the microcontroller, e.g. the instruction set;
(iii) a privileged mode should be provided to encapsulate the mem-
ory area reserved for the kernel and make this area inaccessible to
user programs; and (iv) a separation of the memory access privi-
leges of different portions of the same software module should
be supported.

In our protection model, the primary memory is partitioned
into fixed-size pages. Memory protection is based on protection
domains specifying collections of access rights for the memory
pages. In the privileged mode, reserved for the kernel, memory
protection is disabled. This means that the kernel routines are al-
lowed to access the whole primary memory.

The rest of this paper is organized as follows. Section 2 presents
the architecture of the MPU. A set of system commands is intro-
duced, the MPU commands, which allow the running program to
modify the composition of the protection domains in a strictly con-
trolled fashion. Special attention is paid to the transition to the
privileged mode that ensues when an interrupt handling routine
is executed. Section 3 discusses the proposed MPU architecture
from a number of salient viewpoints, including the distribution, re-
view and revocation of access permissions, and the support for
important memory protection paradigms, including hierarchical
contexts and protection rings. Finally, Section 4 gives concluding
remarks.

2. MPU architecture

As anticipated in Section 1, in our protection model, fixed-size
pages are the basic unit of memory protection. A protection do-
main is expressed in terms of a collection of access rights for the
memory pages; the possible access rights are READ and WRITE. When
a program is running, it is assigned a protection context defined in
terms of a set of protection domains. The protection context limits
the extent of the program activities in the primary memory to the
access rights in the component domains. The MPU supports two
protection contexts for each program, a global context and a local
context. The global context states the memory pages that can be
accessed by the program as a whole. The program is free to limit
the extent of the global context to form a local context for each

program component, e.g. a subroutine. The local context is defined
in terms of a subset of the domains in the global context. Thus, the
global context enforces protection at program level; a program
cannot violate the boundaries of its own global context to access
the private memory pages of the other programs or the system ker-
nel. On the other hand, the local context makes it possible to re-
strict the activity of the given program component to a fraction
of the pages in the global context. Local contexts will be defined
by taking the principle of least privilege [19] into consideration,
according to which each software component should be assigned
the most restricted set of access rights that allows this software
component to carry out its job successfully.

2.1. Protection domains

We shall refer to a typical microcontroller configuration featur-
ing a simple processor and a few kilobyte primary memory (Fig. 1).
The primary memory space is logically partitioned into p fixed-size
pages. The MPU is connected to the system buses. Each time the
processor generates a memory address, the MPU captures this ad-
dress and the specification of the memory access mode (for read or
write). If the MPU detects that the running program does not hold
an access privilege congruent with the intended access, it gener-
ates a hardware interrupt to the processor. Thus, an interrupt from
the MPU corresponds to an exception of violated protection. MPU
interrupts are non-maskable, and have the highest priority.

The MPU hardware supports d protection domains by associat-
ing a page register with each memory page. Fig. 2 shows the config-
uration of the page registers in a system featuring a three-page
primary memory and four domains. Page register PRi associated
with page i is partitioned into two protection fields, corresponding
to the two access rights, READ and WRITE. In the read protection field,
the ith bit, if asserted, specifies that access right READ is included in
the ith protection domain. This is similar to the write protection
field for access right WRITE. It follows that the composition of the
ith domain is expressed by the contents of the ith bit of the two
page protection fields of all page registers.

In the configuration of Fig. 2, domain D0 includes access right
READ for page 0. Domain D1 contains both access rights READ and
WRITE for page 1. Domain D2 contains both access rights READ and
WRITE for page 2. Domain D3 contains access right READ for the three
pages.

A protection context is a set of one or more protection domains.
At any given time, an MPU register, the global context register
(GCR), specifies the composition of the global context of the

Fig. 1. Hardware configuration featuring a processor, a primary memory, and a memory protection unit that is connected to the system buses and can generate hardware
interrupts to the processor.

L. Lopriore / Microprocessors and Microsystems 38 (2014) 226–232 227



Download English Version:

https://daneshyari.com/en/article/460953

Download Persian Version:

https://daneshyari.com/article/460953

Daneshyari.com

https://daneshyari.com/en/article/460953
https://daneshyari.com/article/460953
https://daneshyari.com

