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Abstract

We consider the existence of solutions, in the space W1,1(�), to the problem

minimize
∫
�

L(∇v(x))dx on φ + W
1,1
0 (�)

where L is of slow (linear or at most quadratic) growth. We present a necessary and sufficient condition in 
order that, for any smooth boundary datum φ and for any bounded � with smooth boundary, the minimum 
problem be solvable.
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1. Introduction

We consider the existence of solutions, in the space W 1,1(�), to the problem

minimize
∫
�

L(∇v(x))dx on φ + W
1,1
0 (�) (1)

where L is smooth and of slow (linear or at most quadratic) growth. More precisely, the class L
of Lagrangians L we shall consider is

L = {
L(ξ) = l(|ξ |) : l :R →R

+ is strictly convex , l(t) = l(−t),

l ∈ C2 and l′′ is non-increasing
}

.

Lagrangians defined by smooth strictly convex functions l that, for |t | large, grow like 1
2 t2, or 

|t | − √|t | + γ , or 
√

1 + t2, all belong to L. The theory of existence of solutions for different 
Lagrangians, in particular, for some Lagrangians belonging to the class L, is based on different 
arguments. For Lagrangians of superlinear growth as L(ξ) = 1

2 |ξ |2, the direct method yields 
existence of solutions, based on lower semicontinuity and weak compactness, with no mention 
of the properties either of φ or of the boundary of �. On the other side of the spectrum, for the 
non-parametric minimal surface problem, i.e. for L(ξ) = √

1 + |ξ |2, in order that the minimum 
problem be solvable for any smooth datum φ, a necessary and sufficient condition (see [7]) is 
that the mean curvature of ∂� be non-positive.

A condition for the existence of solutions (intermediate growth condition) that does not imply 
superlinear growth was introduced in [4]; the same condition was used in [1] and [2] to prove 
existence and regularity (lipschitzianity) of solutions to the problem

minimize

b∫
a

L(x(t), x′(t))dt; x(a) = α, x(b) = β.

The results of the above mentioned papers are based on reparametrizations, an argument specific 
to one-dimensional integration set and, to these authors’ knowledge, this intermediate growth 
condition has not yet been used for problems on a multi-dimensional integration set �.

In this paper we show that this condition (Assumption 1 below) is necessary and sufficient in 
order that, for any smooth boundary datum φ and for any bounded � with smooth boundary, the 
minimization problem (1) admits a solution.

In particular, this condition is able to divide Lagrangians of linear growth in two separate 
classes: those like the non-parametric minimal area problem, L(ξ) = √

1 + |ξ |2, where the above 
statement is not true, and those Lagrangians growing, for |ξ | large, like L(ξ) = |ξ | − √|ξ | + γ , 
for which we shall prove existence of solutions.

Models with Lagrangians growing linearly are important in elasticity [5]; our u is a scalar and 
not a vector and we make no claims at solving these problems; still, finding connections might 
be of some interest.
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