

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 260 (2016) 5834-5846

www.elsevier.com/locate/jde

The existence of solutions to variational problems of slow growth *

Arrigo Cellina a,*, Vasile Staicu b

^a Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, I-20125 Milano, Italy

b CIDMA and Department of Mathematics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

> Received 16 September 2015; revised 11 December 2015 Available online 5 January 2016

Abstract

We consider the existence of solutions, in the space $W^{1,1}(\Omega)$, to the problem

minimize
$$\int_{\Omega} L(\nabla v(x))dx$$
 on $\phi + W_0^{1,1}(\Omega)$

where L is of slow (linear or at most quadratic) growth. We present a necessary and sufficient condition in order that, for any smooth boundary datum ϕ and for any bounded Ω with smooth boundary, the minimum problem be solvable.

© 2015 Elsevier Inc. All rights reserved.

MSC: 49K10; 76M30

E-mail addresses: arrigo.cellina@unimib.it (A. Cellina), vasile@ua.pt (V. Staicu).

^{*} The paper was written while the second author was visiting the University of Milano Bicocca partially supported by a INDAM-GNAMPA grant, here gratefully acknowledged, and under Portuguese funds through CIDMA – Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT), within the project PEst-OE/MAT/UI4106/2014 and, during the sabbatical leave, by the Sabbatical Fellowship SFRH/BSAB/113647/2015.

Corresponding author.

1. Introduction

We consider the existence of solutions, in the space $W^{1,1}(\Omega)$, to the problem

minimize
$$\int\limits_{\Omega}L(\nabla v(x))dx \quad \text{on} \quad \phi + W_0^{1,1}(\Omega) \tag{1}$$

where L is smooth and of slow (linear or at most quadratic) growth. More precisely, the class \mathbb{L} of Lagrangians L we shall consider is

$$\mathbb{L} = \left\{ L(\xi) = l(|\xi|) : l : \mathbb{R} \to \mathbb{R}^+ \text{ is strictly convex }, \ l(t) = l(-t), \\ l \in C^2 \text{ and } l'' \text{ is non-increasing} \right\}.$$

Lagrangians defined by smooth strictly convex functions l that, for |t| large, grow like $\frac{1}{2}t^2$, or $|t| - \sqrt{|t|} + \gamma$, or $\sqrt{1+t^2}$, all belong to $\mathbb L$. The theory of existence of solutions for different Lagrangians, in particular, for some Lagrangians belonging to the class $\mathbb L$, is based on different arguments. For Lagrangians of superlinear growth as $L(\xi) = \frac{1}{2}|\xi|^2$, the direct method yields existence of solutions, based on lower semicontinuity and weak compactness, with no mention of the properties either of ϕ or of the boundary of Ω . On the other side of the spectrum, for the non-parametric minimal surface problem, i.e. for $L(\xi) = \sqrt{1+|\xi|^2}$, in order that the minimum problem be solvable for any smooth datum ϕ , a necessary and sufficient condition (see [7]) is that the mean curvature of $\partial \Omega$ be non-positive.

A condition for the existence of solutions (intermediate growth condition) that does not imply superlinear growth was introduced in [4]; the same condition was used in [1] and [2] to prove existence and regularity (lipschitzianity) of solutions to the problem

minimize
$$\int_{a}^{b} L(x(t), x'(t))dt; \ x(a) = \alpha, \ x(b) = \beta.$$

The results of the above mentioned papers are based on reparametrizations, an argument specific to one-dimensional integration set and, to these authors' knowledge, this intermediate growth condition has not yet been used for problems on a multi-dimensional integration set Ω .

In this paper we show that this condition (Assumption 1 below) is *necessary and sufficient* in order that, for any smooth boundary datum ϕ and for any bounded Ω with smooth boundary, the minimization problem (1) admits a solution.

In particular, this condition is able to divide Lagrangians of linear growth in two separate classes: those like the non-parametric minimal area problem, $L(\xi) = \sqrt{1 + |\xi|^2}$, where the above statement is not true, and those Lagrangians growing, for $|\xi|$ large, like $L(\xi) = |\xi| - \sqrt{|\xi|} + \gamma$, for which we shall prove existence of solutions.

Models with Lagrangians growing linearly are important in elasticity [5]; our *u* is a scalar and not a vector and we make no claims at solving these problems; still, finding connections might be of some interest.

Download English Version:

https://daneshyari.com/en/article/4609563

Download Persian Version:

https://daneshyari.com/article/4609563

<u>Daneshyari.com</u>