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Abstract

We analyze a differential equation, describing the maturation of a stem cell population, with a state-
dependent delay, which is implicitly defined via the solution of an ODE. We elaborate smoothness con-
ditions for the model ingredients, in particular vital rates, that guarantee the existence of a local semiflow 
and allow to specify the linear variational equation. The proofs are based on theoretical results of Hartung 
et al. combined with implicit function arguments in infinite dimensions. Moreover we elaborate a criterion 
for global existence for differential equations with state-dependent delay. To prove the result we adapt a 
theorem by Hale and Lunel to the C1-topology and use a result on metric spaces from Diekmann et al.
© 2015 Elsevier Inc. All rights reserved.
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0. Introduction

In this paper we analyze a class of differential equations of the form

w′(t) = q((v(t))w(t), (0.1)

v′(t) = γ (v(t − τ(vt )))g(x2, v(t))w(t − τ(vt ))

g(x1, v(t − τ(vt )))
e
∫ τ (vt )

0 (d−D1g)(y(s,vt ),v(t−s))ds

− μv(t). (0.2)

We use the standard notation

xt (s) := x(t + s), s < 0,

if a function x is defined in t + s ∈ R. If t is fixed, then xt is a function describing the history 
of x at time t . Both (0.1) and (0.2) are equations in R and all functions are real-valued. Next, τ is 
a nonlinear functional with domain in a space of functions. The functions q , γ , g and d have real 
arguments, μ is a parameter and γ , g, d , τ and μ take nonnegative values.

The functional τ describes the delay and is allowed to depend exactly on the second compo-
nent vt of the state. The delay is in general only implicitly given: For a function ψ defined on an 
interval [−h, 0], we specify τ = τ(ψ) as the solution of the equation

y(τ,ψ) = x1, (0.3)

where y(·, ψ) is defined via the ordinary differential equation (ODE)

y′(s) = −g(y(s),ψ(−s)), s > 0,

y(0) = x2, (0.4)

and x1, x2 ∈ R, x1 < x2 are given model parameters, see Fig. 1. We interpret s as the time to 
evolve from y(s) to x2, i.e., we define y going backward in time. This facilitates denoting time 
dependence in the second argument of g, given that ψ is defined on [−h, 0]. As a consequence 
y(s, vt ) is the state at time t − s, given that x2 is reached at time t . The notation allows to express 
this state, and hence also the delay τ , as a function of history vt at time t . Equations (0.1)–(0.4)
can be classified as a differential equation with implicitly defined delay with state dependence.

The system describes the maturation process of stem cells. The underlying model is formu-
lated as a partial differential equation (PDE) of transport type in [12]. A special case of the PDE 
is derived via a limiting argument for related multi-compartment models. In our notation, the 
PDE formulation is (0.1) along with

g(x1, v(t))u(t, x1) = γ (v(t))w(t),

∂tu(t, x) + ∂xg(x, v(t))u(t, x) = d(x, v(t))u(x, v(t)), x ∈ (x1, x2),

v′(t) = u(t, x2)g(x2, v(t)) − μv(t).

An integration along the characteristics, similar to the one in Section II 4.1 in [24], yields that 
u(t, x2) is equal to the first summand on the right hand side of (0.2) divided by g(x2, v(t)). Filling 
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