
Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations 260 (2016) 6828–6854

www.elsevier.com/locate/jde

Analysis of a coupled spin drift–diffusion 

Maxwell–Landau–Lifshitz system ✩

Nicola Zamponi, Ansgar Jüngel ∗

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8–10, 
1040 Wien, Austria

Received 11 October 2015

Available online 21 January 2016

Abstract

The existence of global weak solutions to a coupled spin drift–diffusion and Maxwell–Landau–Lifshitz 
system is proved. The equations are considered in a two-dimensional magnetic layer structure and are sup-
plemented with Dirichlet–Neumann boundary conditions. The spin drift–diffusion model for the charge 
density and spin density vector is the diffusion limit of a spinorial Boltzmann equation for a vanishing 
spin polarization constant. The Maxwell–Landau–Lifshitz system consists of the time-dependent Maxwell 
equations for the electric and magnetic fields and of the Landau–Lifshitz–Gilbert equation for the local mag-
netization, involving the interaction between magnetization and spin density vector. The existence proof is 
based on a regularization procedure, L2-type estimates, and Moser-type iterations which yield the bound-
edness of the charge and spin densities. Furthermore, the free energy is shown to be nonincreasing in time 
if the magnetization–spin interaction constant in the Landau–Lifshitz equation is sufficiently small.
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1. Introduction

Magnetic devices, such as magnetic sensors and hard disk read heads, typically consist of fer-
romagnetic/nonmagnetic layer structures. A model for magnetic multi-layers was first introduced 
by Slonczewski [33]. This model is well suited for Magnetoresistive Random Access Mem-
ory (MRAM) devices but it is less appropriate for current-driven domain wall-motion. A more 
general approach is to introduce the spin accumulation coupled to the magnetization dynamics. 
The evolution of the magnetization is modeled by the Landau–Lifshitz (–Gilbert) equation [36]. 
When electrodynamic effects cannot be neglected (like in high-frequency regimes), this descrip-
tion needs to be coupled to the Maxwell equations. In this paper, we analyze for the first time 
a coupled spin drift–diffusion Maxwell–Landau–Lifshitz system in two space dimensions with 
physically motivated boundary conditions.

Let us describe our model in more detail. We consider a three-layer semiconductor struc-
ture � ⊂ R

2 consisting of two ferromagnetic regions ω1, ω2 ⊂ �, separated by a nonmagnetic 
interlayer �\ω, where ω = ω1 ∪ ω2 is the union of magnetic layers [1].

Landau–Lifshitz–Gilbert equation. The dynamics of the magnetization m = (m1, m2, m3) is 
governed by the Landau–Lifshitz–Gilbert (LLG) equation

∂tm = m × (�m + H + βs) − αm × (m × (�m + H + βs)) in ω, t > 0, (1)

where the effective field Heff = �m + H consists of the sum of the exchange field contribution 
�m and the magnetic field H, and α > 0 denotes the Gilbert damping constant. The addi-
tional term βs models the interaction between the magnetization m and spin accumulation s
with strength β > 0 [9,36]. We choose the initial and boundary conditions

m(0) = m0 in ω, ∇m · ν = 0 on ω, t > 0, (2)

where ν is the outward unit normal on ∂ω, we write m(0) = m(·, 0), and the notation ∇m · ν = 0
means that ∇mi · ν = 0 for i = 1, 2, 3. The Neumann conditions were also used in, e.g., [1,17]. 
We set m = 0 in �\ω.

The existence and non-uniqueness of weak solutions to the LLG equation goes back to [3,34]. 
The local existence of a unique strong solution was proven in [5]. In two space dimensions and 
for sufficiently small initial data, the strong solution is, in fact, global in time [5]. For general ini-
tial data, the two-dimensional solution may develop finitely many point singularities after finite 
time; see [20] for a discussion. The existence of weak solutions in three space dimensions with 
physically motivated boundary conditions was shown in [4], based on a finite-element approxi-
mation. For a complete review on analytical results, we refer to [10,26].

Maxwell equations. The Maxwell equations are given by the time-dependent Ampère and 
Faraday laws for the electric and magnetic fields E = (E1, E2, E3) and H = (H1, H2, H3), re-
spectively,

∂tE − curl H = Je, ∂tH + curl E = −∂tm in �, t > 0, (3)

and by the Gauss laws

div E = ρ − C(x), div(H + m) = 0 in �, t > 0. (4)
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