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Abstract

We prove global existence, uniqueness and regularity of the mild, Lp and classical solution of a non-
linear Fokker–Planck equation arising in an adaptive importance sampling method for molecular dynamics 
calculations. The non-linear term is related to a conditional expectation, and is thus non-local. The proof 
uses tools from the theory of semigroups of linear operators for the local existence result, and an a priori 
estimate based on a supersolution for the global existence result.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following Fokker–Planck equation{
∂tψ = div

(∇V ψ + β−1∇ψ
)− ∂x1(φψψ) in (0,∞) ×T

n,

ψ(.,0) = ψ0 in T
n,

(1.1)
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with periodic boundary conditions on the unit torus Tn of dimension n ≥ 2, where T = R/Z

denotes the one-dimensional unit torus. We assume ψ0 ∈ Wσ,p(Tn), p > n, with ψ0 ≥ 0 and ∫
Tn

ψ0 = 1, 0 < σ < 2 and p > n to be fixed later on. The function V : Tn → R denotes the 

potential energy assumed to be a C2 function and β is a positive constant proportional to the 
inverse of the temperature T . The function ψ �→ φψ is defined from W 1,p(Tn) into W 1,p(Tn) as 
follows

φψ(t, x1) =

∫
Tn−1

∂x1V (x)ψ(t, x)dx2 . . . dxn

ψ(t, x1)
, (1.2)

where

ψ(t, x1) =
∫

Tn−1

ψ(t, x)dx2 . . . dxn. (1.3)

Notice that φψ is well defined if ψ(t, x1) 	= 0, ∀x1 ∈ T. Therefore, we will work on the following 
open subset of Wσ,p(Tn):

Dσ,p(Tn) := {ψ ∈ Wσ,p(Tn) |ψ > 0}. (1.4)

The partial differential equation (1.1) is a parabolic equation with a nonlocal nonlinearity. 
A solution of the Fokker–Planck equation is a probability density function. The parabolic system 
(1.1) can be rewritten as {

ψ̇ − β−1�ψ = F(ψ) in (0,∞),

ψ(0) = ψ0,
(1.5)

where ψ̇ = dψ
dt

denotes the time derivative and

F(ψ) := ∇V.∇ψ + �V ψ − ∂x1(φψψ).

Such Fokker–Planck problems (i.e. (1.1)) arise in adaptive methods for free energy computa-
tion techniques. Many molecular dynamics computations aim at computing free energy, which is 
a coarse-grained description of a high-dimensional complex physical system (see [6,11]). More 
precisely, (1.1) rules the evolution of the density (i.e. ψ(t)) of a stochastic process X(t) that is 
following an adaptively biased overdamped Langevin dynamics called ABF (or Adaptive biasing 
force method). The nonlinear and nonlocal term φψ , defined in (1.2), is used during the simula-
tion in order to remove the metastable features of the original overdamped Langevin dynamics 
(see [2,10] for more details).

Up to our knowledge, this is the first time that parabolic problems with nonlinearities in-
volving the nonlocal term (1.2) are studied. Different types of nonlocal nonlinearities have been 
studied in [14] for instance. A proof of existence of a solution to (1.1) is also obtained in [9] using 
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