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Abstract

We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of os-
cillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array 
is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate 
on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem 
exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 
3 dimensional systems, such as the complex Ginzburg–Landau equation, where the wavenumber of weak 
sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal prob-
lem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev 
spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The collective behavior in systems of coupled oscillators has attracted a tremendous amount 
of interest. Self-organized synchronization in large systems appears particularly dramatic when 
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coupling effects are seemingly weak [22]. A substantial part of the work has been devoted to the 
study of such collections of oscillators in the strikingly simple and explicit Kuramoto model [9]. 
Synchronization and desynchronization as well as a plethora of more complex states have been 
found, and boundaries (or phase transitions) have been characterized [21,1]. On the other hand, 
it is well known that the collective behavior may well depend on the type of coupling, as well 
as the type of internal dynamics at nodes. Of particular interest have been spiky oscillators in 
neuroscience with their quite different phase response curves, or phase-amplitude descriptions 
near Hopf bifurcations.

Our interest here focuses modestly on a rigorous description of pacemakers. Roughly speak-
ing, we ask if and how a small collection of oscillators can influence the collective behavior of a 
large ensemble. This question has been addressed in numerous contexts. One observed dramatic 
influence manifests itself through the occurrence of target patterns. Phenomenologically, a faster 
(or slower) patch of oscillators entrains neighbors and a phase-lag gradient propagates through 
the medium according to an eikonal equation.

The analysis of such phenomena is notoriously complicated by the absence of spectral gaps 
in the linearization at the synchronized state, inherently related to the presence of a neutral phase 
in the medium. Standard perturbation analysis in a large collection of oscillators, based on an 
Implicit Function Theorem, is valid only for extremely small sizes of perturbations and fails to 
capture key phenomena. In an infinite medium, the range of the linearization is not closed, so 
that simple matched asymptotics cannot be justified. In fact, in an infinite medium (and also, 
with some corrections, in large media), one observes that the system relaxes to a frequency-
synchronized state, but the collective frequency depends in unusual ways on the perturbation 
parameter. Characterizing, for instance, the deviation of the localized patch of oscillators from 
the ensemble background by ε, the collective frequency will change with ω ∼ ε2 for ε > 0 and 
remain constant for ε < 0, in a one-dimensional medium. It is this general phenomenon that we 
are concerned with in this paper.

One can ask questions of perturbative nature in many different circumstances. First, one 
can consider various types of oscillators, ranging from simple phase oscillators φ′ = ω, over 
gauge-invariant phase-amplitude oscillators, A′ = (1 + iω)A − (1 + iγ )A|A|2, to general asymp-
totically stable periodic orbits u∗(−ωt) in an ODE u′ = f (u). On the other hand, one can 
look at simple scalar diffusive coupling, or, most generally, dynamics on networks. Our fo-
cus is on simple internal phase dynamics, but non-local coupling along a line. Previous results 
have studied phase-dynamics, formally derived from the complex Ginzburg–Landau equation 
for amplitude-phase oscillators [20], and general stable periodic orbits with diffusive cou-
pling, but in a one-dimensional context [16] or with radial symmetry [7]. Radial symmetry 
was removed as an assumption in [5] in the complex Ginzburg–Landau equation in 3 dimen-
sions.

Phase dynamics can be derived and shown to approximate dynamics on long temporal and 
spatial scales [2]. A general form of the dynamics is

φt = d�φ − κ|∇φ|2 + ω∗, φ ∈R/(2πZ). (1.1)

Substituting φ → φ +ω∗t , thus exploiting the phase invariance, we can assume that ω∗ = 0. The 
solutions φ ≡ φ̄ correspond to the spatially synchronized state. One can show that this synchro-
nized state is asymptotically stable under localized (L1) perturbations, with decay rate given by 
the “effective viscosity” ∼ dt−n/2 [4].
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