

Available online at www.sciencedirect.com

J. Differential Equations 260 (2016) 2296-2353

Journal of Differential Equations

www.elsevier.com/locate/jde

Higher-order resonances and instability of high-frequency WKB solutions

Yong Lu

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, 186 75 Praha, Czech Republic

Received 13 October 2014; revised 12 June 2015

Available online 20 October 2015

Abstract

This paper focuses on the destabilizing role of resonances in high-frequency WKB solutions. Specifically, we study higher-order resonances associated with higher-order harmonics generated by nonlinearities. We give examples of systems and solutions for which such resonances generate instantaneous instabilities, even though the equations linearized around the leading WKB terms are initially stable, meaning in particular that the key destabilizing terms are not present in the data.

© 2015 Elsevier Inc. All rights reserved.

MSC: 35B40; 35Q60

Keywords: Higher-order resonances; WKB solutions; Transparency conditions; Instabilities

Contents

1.	Introd	uction
	1.1.	Klein-Gordon systems 2300
	1.2.	Structure of the paper
	1.3.	Background
		1.3.1. WKB solution, weak and strong transparency, stability 2301
		1.3.2. Absence of strong transparency and instability 2303
	1.4.	Higher-order resonances and instability 2304

http://dx.doi.org/10.1016/j.jde.2015.10.001 0022-0396/© 2015 Elsevier Inc. All rights reserved.

E-mail address: luyong@karlin.mff.cuni.cz.

		1.4.1. Transparency and loss of hyperbolicity	304
		1.4.2. Stability index	305
		1.4.3. Bounds for the symbolic flow	305
2.	Descri	ption of the results	308
	2.1.	Notations	308
	2.2.	Statement of the results	309
3.	Proof of	of Proposition 2.1	311
	3.1.	WKB expansion	311
	3.2.	The approximate solution and proof of Proposition 2.1	314
4.	Proof of	of Theorem 2.3	314
	4.1.	Preparation	315
		4.1.1. Spectral decompositions, resonances and transparencies	315
		4.1.2. Projections and frequency shifts 23	318
		4.1.3. Normal form reduction	320
		4.1.4. Space-frequency localization	322
	4.2.	Duhamel representation and an upper bound	324
	4.3.	Existence in logarithmical time and upper bound	326
	4.4.	Lower bound	328
	4.5.	Proof of the deviation estimate (2.12) 23	331
	4.6.	Proof of the deviation estimate (2.14) 23	332
Ackno	owledgi	nents	333
Apper	ndix A.	Symbols and operators	333
Apper	ndix B.	Bounds for the symbolic flow	335
	B.1.	Preparation	335
	B.2.	Proof of Proposition Appendix B.2	337
		B.2.1. A rough estimate	337
		B.2.2. Spectral of M_0	338
		B.2.3. The case tr $(\tilde{b}_{12}\tilde{b}_{21}) < c_0$	338
		B.2.4. The case tr $(\tilde{b}_{12}\tilde{b}_{21}) \ge c_0$ and around the coalescence locus	339
		B.2.5. The case tr $(\tilde{b}_{12}\tilde{b}_{21}) \ge c_0$ and around the resonances	340
		B.2.6. The case tr $(\tilde{b}_{12}\tilde{b}_{21}) \ge c_0$ and away both from the coalescence locus and the	
		resonance	344
		B.2.7. Proof of Proposition Appendix B.2—summary 23	344
	B.3.	Proof of Proposition Appendix B.1	344
	B.4.	Upper bound for $S^{-,-}$	346
	B.5.	Upper bound for $S^{+,0}$	346
	B.6.	Upper bound for $S^{-,0}$	347
	B.7.	Proof of Proposition 4.9 23	348
Apper	ndix C.	An integral representation formula 23	348
Refere	ences .		352

1. Introduction

We study highly-oscillating solutions to hyperbolic systems based on Maxwell's equations. Considerable progress has recently been made in this line of research, especially following the works of Joly, Métivier and Rauch in the nineties (see for instance [3,11,12], and [4] for an overview and further references). The underlying physical problems deal with light–matter interactions.

Download English Version:

https://daneshyari.com/en/article/4609618

Download Persian Version:

https://daneshyari.com/article/4609618

Daneshyari.com