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Abstract

We consider the equations governing the motion of incompressible second grade fluids in a bounded 
two-dimensional domain with Navier-slip boundary conditions. We first prove that the corresponding so-
lutions are uniformly bounded with respect to the normal stress modulus α in the L∞-H 1 and the L2-H 2

time–space norms. Next, we study their asymptotic behavior when α tends to zero, prove that they converge 
to regular solutions of the Navier–Stokes equations and give the rate of convergence in terms of α.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The second grade fluid model forms a subclass of differential type fluids of complexity 2, 
and is one of the simplest constitutive models for flows of non-Newtonian fluids that can pre-
dict normal stress differences (cf. [23] or [21]). The Cauchy stress tensor T for a homogeneous 
incompressible second grade fluid is given by a constitutive equation of the form

T = −pI+ νA1(u) + α1A2(u) + α2 (A1(u))2 , (1.1)
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where p denotes the hydrodynamic pressure, ν is the viscosity of the fluid, α1 and α2 are vis-
coelastic parameters (normal stress moduli), u is the velocity field, A1 and A2 are the first two 
Rivlin–Ericksen tensors defined by

A1(u) = 2Du, A2(u) = (
∂
∂t

+ u · ∇)
A1(u) + A1(u)∇u + ∇u�A1(u)

with Du = ∇u+∇u�
2 standing for the symmetric part of the velocity gradient. According to [8], 

if the fluid modeled by equation (1.1) is to be compatible with thermodynamics, then

ν ≥ 0, α1 ≥ 0, α1 + α2 = 0. (1.2)

We refer to [9] for a critical and extensive historical review of second-order (and higher order) 
fluid models and, in particular, for a discussion on the sign of the normal stress moduli. Here 
we will restraint to the simplified case α1 + α2 = 0, with α1 ≥ 0 and ν > 0, and supplement the 
obtained governing equation by Navier-slip boundary conditions. More precisely, setting α = α1, 
we will consider the following problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂t

(u − α�u) − ν�u + curl (u − α�u) × u + ∇p = f in Q,

divu = 0 in Q,

u · n = 0, (n · Du) · τ = 0 on �,

u(0) = u0 in �,

(1.3)

where f is the given body force, u0 is the initial data, Q = ]0, T [ × �, � = ]0, T [ × �, T is 
a fixed positive number, � ⊂ R

2 is a bounded domain with boundary �, n = (n1, n2) and τ =
(−n2, n1) are the unit normal and tangent vectors to the boundary �. As this equation is set in 
dimension two, the vector u is written in the form u = (u ≡ (u1, u2), 0) in order to define the 
vector product and the curl

curlu = (0,0, curlu) with curlu = ∂u2
∂x1

− ∂u1
∂x2

.

Even for this simple but mathematically interesting model, the problem is still difficult since the 
nonlinear term involves derivatives with higher order than the ones appearing in the viscous term. 
In the inviscid case (ν = 0), the second-grade fluid equations are called α-Euler equations. Ini-
tially proposed as a regularization of the incompressible Euler equations, they are geometrically 
significant and have been interpreted as a model of turbulence (cf. [13] and [14]). They also in-
spired another variant, called the α-Navier–Stokes equations that turned out to be very relevant in 
turbulence modeling (cf. [11,10] and the references therein). These equations contain the regular-
izing term −ν� (u − α�u) instead of −ν�u, making the dissipation stronger and the problem 
much easier to solve than in the case of second-grade fluids. When α = 0, the α-Navier–Stokes 
and the second grade fluid equations are equivalent to the Navier–Stokes equations.

The case of Dirichlet boundary conditions has received a lot of attention. It was studied for the 
first time in [22] and [5] for both steady and unsteady cases. A Galerkin’s method in the basis of 
the eigenfunctions of the operator curl(curl(u − α�u)) was especially designed to decompose 
the problem into a mixed parabolic–hyperbolic type, looking for the velocity u as a solution of a 
Stokes-like system coupled to a transport equation satisfied by curl (u − α�u). Under minimal 
restrictions on the data, this approach allows the authors to establish the existence of solutions 



Download English Version:

https://daneshyari.com/en/article/4609625

Download Persian Version:

https://daneshyari.com/article/4609625

Daneshyari.com

https://daneshyari.com/en/article/4609625
https://daneshyari.com/article/4609625
https://daneshyari.com

