Microprocessors and Microsystems 37 (2013) 446-459

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at SciVerse ScienceDirect

Microprocessors and Microsystems

EMBEDDED
HARDWARE
DESIGN

A scalable, non-interfering, synthesizable Network-on-Chip monitor - Extended

version

Antti Alhonen *, Erno Salminen, Lasse Lehtonen, Timo D. Himadldinen

Tampere University of Technology, Department of Computer Systems, P.0. Box 553, FIN-33101 Tampere, Finland

ARTICLE INFO ABSTRACT

Article history:
Available online 12 June 2012

Keywords:
Network-on-Chip
Hardware monitoring
System-on-Chip
Performance analysis
Real-time trace

Today’s Multi-Processor System-on-Chips incorporate Network-on-Chips to interconnect multiple pro-
cessors, memories, and accelerators. We present a freely available toolset to monitor and analyze these
networks. Internal signals are pre-analyzed on FPGA without interfering the system. Host PC carries out
further analysis with post-processing algorithms and an intuitive graphical interface. Traces of end-to-
end communication can be approximated from mere link statistics, average error being 10%. In a case
study of MPEG-4 encoder ran at 25 MHz, we compared link utilizations and stall cycles by any time win-
dow from 500 clock cycles to the whole running time. Area overhead for monitoring was 5%.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

System-on-Chip (SoC) integrates processing elements (PEs),
memories, and external interfaces into a single chip. Network-
on-Chip (NoC) is a paradigm of transferring data between these re-
sources inside a chip [1-3]. As a SoC grows larger, selecting and
further shaping the appropriate communication network between
the elements becomes more and more crucial [4]. NoCs typically
consist of routers which are connected to each other with links. This
way, long wires and combinational paths can be split to smaller
segments compared to traditional bus approaches [1]. Different
types of NoCs are portrayed and compared in [5,6].

The design of a SoC involves a large amount of simulations to
verify the correct functionality and to approximate the perfor-
mance. However, simulation is typically on an order of 1000 times
or more slower than the actual HW or emulation [7]. Furthermore,
in most practical cases, creating simulation models for user input,
external chips, etc. will require much additional work and may be
hard to simulate perfectly. Hence, it is beneficial that different
communication architectures can be evaluated using FPGA proto-
typing. However, the prototype acts as a black box with only 1/O
available to the developer, whereas simulator allows designer to
pick any internal signal for evaluation. Hardware monitoring solves
the problem of the limited visibility in FPGA compared to simula-
tion. Monitoring the links in the NoC helps to recognize the bottle-
necks and develop the NoC or the system mapping further. Fig. 1
shows an example of NoC monitoring using our approach.

* Corresponding author. Tel.: +358 40 5916233.
E-mail addresses: antti.alhonen@tut.fi (A. Alhonen), erno.salminen@tut.fi (E.
Salminen).

0141-9331/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2012.04.008

Measuring the relevant figures from the NoC can be done on
many different levels, all of which have their own trade-offs. For
example, cycle-accurate traces need lots of hardware resources
and bandwidth whereas performance counters on SW provide only
very coarse measurements. Another key issue is to process and
visualize the performance statistics so that designer can under-
stand the system behavior and optimize it. Sometimes, Transaction
Level Models (TLMs) are created for simulation to increase system
abstraction from logical levels to complete units of communication
such as packets of data and their acknowledgements. If the
abstraction level of HW measurements can be increased accord-
ingly, one can avoid the work of creating these separate models
which are difficult to match with the actual HW.

The goals of this work is (1) to find a monitoring solution that
works at the level of NoC, instead of single PEs, (2) to find a new,
intermediate level of abstraction between the bit-accurate logic
analyzer and highly-specialized custom function monitoring, and
(3) to find ways to post-process, interpret and visualize the col-
lected data that, by its nature, is vast in size.

In this paper we propose a scalable non-interfering low-level
approach, called Trace Monitor, to monitor the behavior of NoCs
in real-time with high precision. By “trace” we mean a set of data
captured from the system under evaluation. Trace collection can be
done in real-time and the results can be shown simultaneously on
the host computer screen while running the prototype on FPGA. On
the other hand, the trace collected can later be analyzed further,
which is where we have set our main emphasis. The Trace Monitor
toolset is freely available under the LGPL license.

This paper is an extended version of our conference paper in
Norchip 2010 [8]. We have added a few additional references,
and some implementation details of both HW and SW part. Then,


http://dx.doi.org/10.1016/j.micpro.2012.04.008
mailto:antti.alhonen@tut.fi
mailto:erno.salminen@tut.fi
http://dx.doi.org/10.1016/j.micpro.2012.04.008
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

A. Alhonen et al./ Microprocessors and Microsystems 37 (2013) 446-459

447

FPGA Host PC
NoC router NoC router ol
+ PE + PE g g .
Q
NoC
signals Eth »| Ethernet g %‘ / \L(
_\ / ctrl Chlp L
NoC router NoC router A
+PE \ rl +PE UDP/IP
ctrl
T
Monitor (network
specific) =1 Trace
N monitor ctrl
Trace Monitor
FPGA board

Fig. 1. An example instantiation of Trace Monitor (shaded blocks) in a 2 x 2 mesh Network-on-Chip on FPGA.

we introduce a new, sophisticated data analysis technique to gen-
erate approximations of traffic between two endpoints from the
bare data of network links without data tagging or routing or ad-
dress logging in HW. Finally, we present monitoring results from
a multiprocessor MPEG-4 video encoder [9].

The rest of the paper is organized as follows: Section 2 presents
related work on NoC monitoring. Section 3 discusses our objectives
and major design choices. Section 4 summarizes the synthesizable
HW part of the Trace Monitor in detail, whereas Section 5 describes
the SW running on the host PC. Sections 6 and 7 present the post-
processing algorithm and evaluate its performance. Section 8 pre-
sents the monitoring case study with MPEG-4, and finally, Section 9
concludes the paper.

2. Related work

The act of extracting information about the internal state or ac-
tions in an integrated circuit is hereafter called “monitoring”. This
definition is purposely vague, as there are many approaches for dif-
ferent needs.

2.1. Traffic generator based monitoring

The importance of evaluating NoCs on FPGA in addition to sim-
ulation is well portrayed in [7,10,11], where traffic generator (TG)
and traffic receptor (TR) suites are presented. Traffic generators en-
able the integration of end-to-end monitoring mechanisms, but we
take a more generalized monitoring approach with a possibility to
monitor any real, synthesizable system on FPGA. This includes our
Traffic Generator [12], covered very briefly in this paper, or any
other synthesizable Traffic Generator, or any real system that can
be synthesized on FPGA, as shown in the case study section.

2.2. Graphical presentation of monitored system

In [13], a graphical tool for NoC data flow evaluation similar to
ours is presented. This tool, however, is limited to simulation. Sim-
ulation provides quick system set-up time for design space explo-
ration, and allows unlimited system size without area restrictions,
but is very limited in speed and thus simulated time as shown in
[7,10,11]. Furthermore, creating simulation models for peripheral
and I/O devices present in most real systems may turn out to be
cumbersome or nearly impossible in some cases.

2.3. CPU and PE-oriented monitoring

General purpose processors used in an MP-SoC for the applica-
tion can collect statistics by using counters or data tagging [14].

This approach is quick to harness and offers a graphical user inter-
face. However, it interferes with the system as it affects the timing
of data transactions and causes extra processing for the processors.
Usage of monitor SW is naturally limited to general purpose pro-
cessors only, thus it cannot be used for HW accelerators or other
HW types, and it cannot log the inner state of the network but just
the communication the processors see. The time resolution may be
thousands of clock cycles, especially if a multi-tasking operating
system is involved.

One option is to implement custom monitoring functions in the
processing elements. Such a monitor is aware of the functionality
of the PE, thus working at a higher level to log only relevant data.
For example, it can be connected to an internal state machine of an
HW accelerator. Nonetheless, these kinds of monitors are very use-
ful for evaluating PEs’ internal performances, and to some extent
PE-to-PE communication, but not very effective to give under-
standing how the NoC performs. Furthermore, a generic type of a
monitor for many different IP types may be hard to create.

2.4. Interfering monitoring

[15] presents a monitoring scheme with the aim of run-time
optimization and resource allocation. The Run-Time Manager
(RTM) collects statistical data from network routers. The monitor
uses the NoC under evaluation to transfer monitoring data. Fur-
thermore, monitoring data is transferred with higher priority than
the actual data in system, which also demands for network that
supports prioritized transfers. This is a good example of an inter-
fering monitor that affects system timing and performance by
using the studied NoC for the monitoring purposes.

2.5. Cycle-accurate trace collection

A low-level monitor can capture cycle-accurate signal values
from a set of wires, resulting in waveforms when plotted as a func-
tion of time. For example, major FPGA vendors offer synthesizable
logic analyzers in their FPGA synthesis tools for design debugging in
a real environment, including actual user input and communica-
tion with external circuitry. This type of monitoring is straightfor-
ward to implement in HW; wires (signals) of the actual application
are connected to (read by) the monitoring entity. This is com-
pletely transparent to the original application, unless the increased
fan-out requirement affects timing in some special cases.

The major challenge is the huge amount of data generated; the
data needs to be stored somehow locally and then transferred to a
computer for off-line evaluation. Altera SignalTap [16] uses the
FPGA'’s internal memory for storage and allows a relatively limited



Download English Version:

https://daneshyari.com/en/article/460964

Download Persian Version:

https://daneshyari.com/article/460964

Daneshyari.com


https://daneshyari.com/en/article/460964
https://daneshyari.com/article/460964
https://daneshyari.com

