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Abstract

We study the evolution of the heat and of a free quantum particle (described by the Schrodinger equation)
on two-dimensional manifolds endowed with the degenerate Riemannian metric ds? =dx? + |x|72°‘ do?,
where x € R, 6 € T and the parameter « € R. For &« < —1 this metric describes cone-like manifolds (for
o = —1 it is a flat cone). For « = 0 it is a cylinder. For o > 1 it is a Grushin-like metric. We show that
the Laplace—Beltrami operator A is essentially self-adjoint if and only if o ¢ (—3, 1). In this case the
only self-adjoint extension is the Friedrichs extension A, that does not allow communication through
the singular set {x = 0} both for the heat and for a quantum particle. For « € (—3, —1] we show that for
the Schrodinger equation only the average on 6 of the wave function can cross the singular set, while the
solutions of the only Markovian extension of the heat equation (which indeed is A ) cannot. For o €
(—1, 1) we prove that there exists a canonical self-adjoint extension A g, called bridging extension, which
is Markovian and allows the complete communication through the singularity (both of the heat and of a
quantum particle). Also, we study the stochastic completeness (i.e., conservation of the L! norm for the
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heat equation) of the Markovian extensions A g and A g, proving that A ¢ is stochastically complete at the
singularity if and only if & < —1, while A g is always stochastically complete at the singularity.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the Riemannian metric on M = (R \ {O}) x T whose orthonormal
basis has the form:

|x|*

Xl(x,9)=<(l)>, Xz(x,0)=< 0 ), aeR. (1)

Here x e R\ {0}, 6 € T and o € R is a parameter. In other words we are interested in the Rie-
mannian manifold (M, g), where

g= dx* + |x|_2°‘d02, i.e., in matrix notation g = <(1) |x|(32" > . 2)

Define

Mcylinder =R x Tv Mcone = cylinder/ ~,
where (x1,61) ~ (x2,60) if and only if x; = x, = 0. In the following we are going to suitably
extend the metric structure to Mcylinder through (1) when @ > 0, and to Mcope through (2) when
o <0.

Recall that, on a general two dimensional Riemannian manifold for which there exists a global
orthonormal frame, the distance between two points can be defined equivalently as

1
d(CII,CIZ)=inf{ /\/ul(t)2+u2(f)2df |y : [0, 11— M Lipschitz , y (0) = g1, y(1) =q2
0

and u1, uy are defined by y (1) = u1 (1) X1(y (1)) + u2(t) X2(y (1)) } 3)

1
d(q1,92) =inf{ /\/gy(z)(l}(f)’ y(®)dt |y 1[0, 1] — M Lipschitz , y (0) = g1, y (1) =qz},
0

“)

where {X1, X3} is the global orthonormal frame for (M, g).
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