

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 260 (2016) 3963-3990

www.elsevier.com/locate/jde

Cubic perturbations of elliptic Hamiltonian vector fields of degree three

Lubomir Gavrilov ^{a,*}, Iliya D. Iliev ^b

a Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse, France
 b Institute of Mathematics, Bulgarian Academy of Sciences, Bl. 8, 1113 Sofia, Bulgaria

Received 27 March 2015; revised 24 August 2015

Available online 18 November 2015

Abstract

The purpose of the present paper is to study the limit cycles of one-parameter perturbed plane Hamiltonian vector field $X_{\mathcal{E}}$

$$X_{\varepsilon}: \left\{ \begin{array}{ll} \dot{x} = H_{y} + \varepsilon f(x,y) \\ \dot{y} = -H_{x} + \varepsilon g(x,y), \end{array} \right. \quad H = \frac{1}{2}y^{2} + U(x)$$

which bifurcate from the period annuli of X_0 for sufficiently small ε . Here U is a univariate polynomial of degree four without symmetry, and f, g are *arbitrary* cubic polynomials in two variables.

We take a period annulus and parameterize the related displacement map $d(h,\varepsilon)$ by the Hamiltonian value h and by the small parameter ε . Let $M_k(h)$ be the k-th coefficient in its expansion with respect to ε . We establish the general form of M_k and study its zeroes. We deduce that the period annuli of X_0 can produce for sufficiently small ε , at most 5, 7 or 8 zeroes in the interior eight-loop case, the saddle-loop case, and the exterior eight-loop case respectively. In the interior eight-loop case the bound is exact, while in the saddle-loop case we provide examples of Hamiltonian fields which produce 6 small-amplitude limit cycles. Polynomial perturbations of X_0 of higher degrees are also studied.

© 2015 Elsevier Inc. All rights reserved.

E-mail address: lubomir.gavrilov@math.univ-toulouse.fr (L. Gavrilov).

^{*} Corresponding author.

Contents

1.	Introd	uction	3964
2.	Calcul	lation of the coefficients $M_k(h)$	3967
	2.1.	The coefficient $M_1(h)$	3967
	2.2.	The coefficient $M_2(h)$	3968
	2.3.	The coefficient $M_3(h)$	3970
	2.4.	The coefficient $M_4(h)$	3974
3.	The P	etrov module	3977
4.	Zeroe	s of Abelian integrals	3980
	4.1.	The interior eight-loop case	3981
	4.2.	The saddle-loop case	3983
	4.3.	The exterior eight-loop case	
5.	Lower	bounds for the number of zeroes of $M_k(h)$	3987
		ments	
Apper	ndix A.		3989

1. Introduction

We consider cubic systems in the plane which are small perturbations of Hamiltonian systems with a center. Our goal is to estimate the number of limit cycles produced by the perturbation. The Hamiltonians we consider have the form $H = y^2 + U(x)$ where U is a polynomial of degree 4. In this paper we exclude from consideration the four symmetric Hamiltonians $H = y^2 + x^2 \pm x^4$, $H = y^2 - x^2 + x^4$ and $H = y^2 + x^4$ because they require a special treatment, see [6]. Therefore, one can use the following normal form of the Hamiltonian

$$H = \frac{1}{2}y^2 + \frac{1}{2}x^2 - \frac{2}{3}x^3 + \frac{a}{4}x^4, \quad a \neq 0, \frac{8}{9}.$$
 (1)

An easy observation shows that the following four topologically different cases occur:

$$a < 0$$
 saddle-loop,
 $0 < a < 1$ eight loop,
 $a = 1$ cuspidal loop,
 $a > 1$ global center.

There is one period annulus in the saddle-loop and the global center cases, two annuli in the cuspidal loop case, and three annuli in the eight loop case. Note that $a=\frac{8}{9}$ is the symmetric eight loop case which we are not going to deal with. Take small $\varepsilon>0$ and consider the following one-parameter perturbation of the Hamiltonian vector field associated to H:

$$\dot{x} = H_y + \varepsilon f(x, y),
\dot{y} = -H_x + \varepsilon g(x, y),$$
(2)

Download English Version:

https://daneshyari.com/en/article/4609692

Download Persian Version:

https://daneshyari.com/article/4609692

Daneshyari.com