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Abstract

Let f: Ry x X — X be atopological semi flow on a Polish space X. In 1977, Karl Sigmund conjectured
that if there is a point x in X such that the motion f (., x) has just X as its minimal center of attraction, then
all such x form a residual subset of X. In this paper, we first present a positive solution to this conjecture
and then apply it to the study of chaotic dynamics occurring inside or near the minimal center of attraction
of a motion f (., x).
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

By a CO-semi flow over a metric space X, we here mean a transformation f: Ry x X — X
where Ry = [0, 00), which satisfies the following three conditions:

(1) The initial condition: f(0,x) =x forall x € X.
(2) The condition of continuity: if t, — ¢ in Ry and x, — x in X, then f(t,, x,) — f(t,x) as
n— oo.
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(3) The semigroup condition: f(fp, f(t1,x)) = f(t; + 12, x) for any x in X and any times #1, t»
in RJ,_.

We sometimes write f (¢, x) = f’(x) for any > 0 and x € X; and for any given point x € X
we shall call f(.,x) a motion in X and Of(x) = f(Ry, x) the orbit starting from x. If Oy (x)
is precompact (i.e. Of(x) is compact) in X, then we say the motion f(., x) is Lagrange stable
(cf. [17]).

We refer to any subset A of X as an f-invariant set if f(t,x) € A for each point x € A and
any time 7 > 0. In dynamical systems, statistical mechanics and ergodic theory, we shall have to
do with “probability of sojourn of a motion f(., x) in a given region E of X as t — +o00:

T

1
P(f(.x)eE)= TLir}rlmf / Lg(f(t, x))dt,

0

where 1 (x) is the characteristic function of the set £ on X. This motivates H.F. Hilmy to
introduce following important concept, which was discussed in [15,17,19,14], for example.

Definition 1.1. (See Hilmy, 1936 [12].) Given any x € X, a closed subset C, of X is called the
center of attraction of the motion f(.,x) ast — +ooif P(f(.,x) € B:(Cy)) =1forall ¢ > 0. If
the set C does not admit any proper subset which is likewise a center of attraction of the motion
f(,x) as t - 400, then C; is called the minimal center of attraction of the motion f (., x) as
t — +o00. Here B.(C,) denotes the e-neighborhood around Cy in X.

First of all, by the classical Cantor—Baire theorem and Zorn’s lemma we can obtain the fol-
lowing basic existence of minimal center of attraction of a motion f (., x).

Lemma 1.2. Let f: R, x X — X be a CO-semi flow on a metric space X. Then each Lagrange
stable motion f (., x) always possesses the minimal center of attraction.

From now on, by C, we will understand the minimal center of attraction of a Lagrange stable
motion f(.,x) as t = +o0. In [19], Karl Sigmund gave an intrinsic characterization for C,. In
this paper, we shall study the generic property and chaotic dynamics occurring in and near C, for
a Lagrange stable motion f (., x).

Just as the existence of one point which is topologically transitive implies that a residual
set consists of topologically transitive points, in 1977 Karl Sigmund raised the following open
problem:

Conjecture 1.3. (See K. Sigmund, 1977 [19, Remark 4].) For any homeomorphism f of a com-
pact metric space X, the set of points x € X with C, = X, if nonempty, is residual in X.

Since a residual set contains a dense G subset of X, it is very large from the viewpoint of
topology. Although Sigmund’s conjecture is of interest, there has not been any progresses on
it since 1977 except f satisfies the “specification” property [19, Proposition 6]. In Section 2,
we will present a positive solution to Sigmund’s conjecture without any imposed shadowing
assumption like specification, which may be stated as follows:
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