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Abstract

In this article we will introduce a new model to describe the leading order behavior of an ideal and
axisymmetric fluid moving in a very narrow domain. After providing a formal derivation of the model, we
will prove the well-posedness and provide a rigorous mathematical justification for the formal derivation
under a new sign condition. Finally, a blowup result regarding this model will be discussed as well.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In various applications in meteorology, oceanography, atmospheric dynamics, blood flow and
pipeline transport, the vertical or radial length scale of the underlying flow is usually small com-
pared to the horizontal length scale. To study these problems, the standard approach is to apply
the hydrostatic approximations. For example, when a two-dimensional ideal fluid moves in a
fixed and very narrow channel, one can describe the leading order behavior of the fluid motion
by the two-dimensional hydrostatic Euler equations, which can be formally derived by the hy-
drostatic limit [1, § 4.6] or the least action principle [2]. Under the local Rayleigh condition, the
formal derivation of the two-dimensional hydrostatic Euler equations via the hydrostatic limit
was rigorously justified in [3—5]. Without the local Rayleigh condition, the formal derivation
may not be valid [3,6]. The local-in-time existence and uniqueness under the analyticity assump-
tion [7], the local Rayleigh condition [8,5], or their combinations in different regions [9] are also
known, but the global-in-time existence is still open. Furthermore, for a general initial data, the
two-dimensional hydrostatic Euler equations are somewhat ill-posed: see [10] for the linearized
instability, and [11,12] for the formation of singularities.

In this paper, we study the leading order behavior of axisymmetric and ideal flows moving
in a very narrow domain in three spatial dimensions. The prime objectives of this paper are as
follows:

(1) to formally derive the axisymmetric hydrostatic Euler equations, which describe the leading
order behavior of axisymmetric Euler flows moving in a thin tube, via the hydrostatic limit
(see Subsection 2.1);

(ii) to introduce a new sign condition (see inequality (2.8) below), which is an analogue of the
local Rayleigh condition in two spatial dimensions, for the axisymmetric hydrostatic Euler
equations in three spatial dimensions;

(iii) to prove the well-posedness of the axisymmetric hydrostatic Euler equations under the new
sign condition (see Theorem 2.2, Sections 3 and 4, as well as Appendix C);

(iv) to provide a rigorous mathematical justification of the formal derivation for the axisym-
metric hydrostatic Euler equations under the new sign condition (see Theorem 2.4 and
Section 5);
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