Uniqueness of the interior transmission problem with partial information on the potential and eigenvalues

Chuan-Fu Yang ${ }^{\text {a,*, }}$, Sergey Buterin ${ }^{\text {b, }, *, 1}$
${ }^{\text {a }}$ Department of Applied Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
${ }^{\text {b }}$ Department of Mathematics, Saratov University, Astrakhanskaya 83, Saratov 410012, Russia
Received 9 February 2015; revised 24 November 2015
Available online 4 December 2015

Abstract

The inverse spectral problem of determining a spherically symmetric wave speed v is considered in a bounded spherical region of radius b. A uniqueness theorem for the potential q of the derived SturmLiouville problem $B(q)$ is presented from the data involving fractions of the eigenvalues of the problem $B(q)$ on a finite interval and knowledge of q over a corresponding fraction of the interval. The methods employed rest on Weyl-function techniques and properties of zeros of a class of entire functions.

© 2015 Elsevier Inc. All rights reserved.

MSC: 34A55; 34L40; 35R30; 35Q60; 35 J 40
Keywords: Interior transmission problem; Inverse spectral problem; Transmission eigenvalue; Weyl-function

1. Introduction

The interior transmission problem is a non-selfadjoint boundary-value problem for a pair of fields Ψ and Ψ_{0} in a bounded and simply connected domain Ω of \mathbb{R}^{n} with the sufficiently smooth boundary $\partial \Omega$. It was first stated in [10] and can be formulated [8,10,12,14] as

[^0]\[

\left\{$$
\begin{array}{l}
\Delta \Psi+k^{2} n(x) \Psi=0, x \in \Omega \tag{1.1}\\
\Delta \Psi_{0}+k^{2} \Psi_{0}=0, x \in \Omega \\
\Psi=\Psi_{0}, \frac{\partial \Psi}{\partial \mathbf{n}}=\frac{\partial \Psi_{0}}{\partial \mathbf{n}}, x \in \partial \Omega
\end{array}
$$\right.
\]

where Δ denotes the Laplacian, k^{2} is the spectral parameter, \mathbf{n} represents the outward unit normal to the boundary $\partial \Omega$, and the positive quantity $n(x)$ corresponds to the square of the refractive index of the medium at location x in the electromagnetic case or the reciprocal of the square of the sound speed $v(x)$ in the acoustic case, i.e. $v(x):=\frac{1}{\sqrt{n(x)}}$. In the acoustic case, $\sqrt{n(x)}$ is usually called the slowness. Without loss of generality, we can assume that in the region exterior to Ω, the speed of the electromagnetic wave is 1 or the sound speed is 1 in the acoustic case. This boundary value problem is called the interior transmission problem.

In the case $n=3$, where $\Omega=\Omega_{b}$ is a ball of radius $b>0$ centered at the origin and $n(x)$ is spherically symmetric $(n(x)=n(r), r=|x|)$, the boundary value problem (1.1) becomes equivalent to a nonstandard Sturm-Liouville-type eigenvalue problem with the spectral parameter appearing in the boundary condition at the right endpoint. Our assumptions on $n(r)$ are that $n(r)$ is positive and $n(r) \in W_{2}^{2}[0, b], n(b)=1, n^{\prime}(b)=0$. In this paper we consider the inverse spectral problem of recovering the function $n(r)$ from the so-called transmission eigenvalues for which the corresponding eigenfunctions are spherically symmetric.

Under the above assumptions this inverse spectral problem is equivalent to recovering the potential $q(x)$ from the spectrum of the following boundary value problem

$$
B(q):\left\{\begin{array}{l}
y^{\prime \prime}(x)+(\lambda-q(x)) y(x)=0, \quad 0<x<1 \tag{1.2}\\
y(0)=0=y(1) \cos (\sqrt{\lambda} a)-y^{\prime}(1) \frac{\sin (\sqrt{\lambda} a)}{\sqrt{\lambda}}
\end{array}\right.
$$

Here $\sqrt{\lambda}$ is the square root branch with $\operatorname{Im}(\sqrt{\lambda}) \geq 0$ and

$$
\begin{gathered}
q(x)=B^{2}\left(\frac{n^{\prime \prime}(r)}{4 n^{2}(r)}-\frac{5\left(n^{\prime}(r)\right)^{2}}{16 n^{3}(r)}\right), \quad x=\frac{1}{B} \int_{0}^{r} \sqrt{n(\zeta)} d \zeta \\
\lambda=B^{2} k^{2}, \quad a=\frac{b}{B}, \quad B=\int_{0}^{b} \sqrt{n(\zeta)} d \zeta
\end{gathered}
$$

Denote $\tilde{n}(x):=n(r)$. Then the function $\sqrt[4]{\tilde{n}(x)}$ satisfies the following Cauchy problem:

$$
\begin{gathered}
(\sqrt[4]{\tilde{n}(x)})^{\prime \prime}=q(x) \sqrt[4]{\tilde{n}(x)}, \quad 0<x<1, \\
\sqrt[4]{\tilde{n}}(1)-1=0=(\sqrt[4]{\tilde{n}})^{\prime}(1)
\end{gathered}
$$

Thus, $q(x)$ uniquely determines $\tilde{n}(x), 0<x<1$. Again, from $x=\frac{1}{B} \int_{0}^{r} \sqrt{n(\zeta)} d \zeta$ we get

$$
\frac{d r}{d x}=\frac{B}{\sqrt{\tilde{n}(x)}}
$$

https://daneshyari.com/en/article/4609728

Download Persian Version:
https://daneshyari.com/article/4609728

Daneshyari.com

[^0]: * Corresponding authors.

 E-mail addresses: chuanfuyang@njust.edu.cn (C.-F. Yang), buterinsa@info.sgu.ru (S. Buterin).
 ${ }^{1}$ Both authors contributed equally.

