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Abstract

The inverse spectral problem of determining a spherically symmetric wave speed v is considered in a
bounded spherical region of radius b. A uniqueness theorem for the potential ¢ of the derived Sturm—
Liouville problem B(gq) is presented from the data involving fractions of the eigenvalues of the problem
B(g) on a finite interval and knowledge of ¢ over a corresponding fraction of the interval. The methods
employed rest on Weyl-function techniques and properties of zeros of a class of entire functions.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The interior transmission problem is a non-selfadjoint boundary-value problem for a pair of
fields ¥ and ¥ in a bounded and simply connected domain €2 of R” with the sufficiently smooth
boundary 9€2. It was first stated in [10] and can be formulated [8,10,12,14] as
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AV +E2n(x)¥ =0, x € Q,

AWy +k2Wy =0, x € Q, (1.1)
W=, B =00y ehQ,

where A denotes the Laplacian, k is the spectral parameter, n represents the outward unit normal
to the boundary 9€2, and the positive quantity n(x) corresponds to the square of the refractive
index of the medium at location x in the electromagnetic case or the reciprocal of the square
of the sound speed v(x) in the acoustic case, i.e. v(x) := ﬁ In the acoustic case, /n(x) is
usually called the slowness. Without loss of generality, we can assume that in the region exterior
to €2, the speed of the electromagnetic wave is 1 or the sound speed is 1 in the acoustic case. This
boundary value problem is called the interior transmission problem.

In the case n = 3, where Q2 = 2, is a ball of radius b > 0 centered at the origin and n(x) is
spherically symmetric (n(x) =n(r), r = |x|), the boundary value problem (1.1) becomes equiv-
alent to a nonstandard Sturm-Liouville-type eigenvalue problem with the spectral parameter
appearing in the boundary condition at the right endpoint. Our assumptions on n(r) are that
n(r) is positive and n(r) € sz [0, 5], n(b) =1, n’(b) = 0. In this paper we consider the inverse
spectral problem of recovering the function n(r) from the so-called transmission eigenvalues for
which the corresponding eigenfunctions are spherically symmetric.

Under the above assumptions this inverse spectral problem is equivalent to recovering the
potential g (x) from the spectrum of the following boundary value problem

V') +(—q)y(x)=0, 0<x<l,

B(q): - (1.2)
¥(0) = 0 = y(1) cos(v/Aa) — ym%.

Here \/X is the square root branch with Im(\/X) >0 and

() S(n(r)? [
q0) = B2(4n2(r) T T6n3(r) ) x= E/ V@),
0

b
A= B%k?, a:%, B=/\/n(§)d§.
0

Denote 7i1(x) := n(r). Then the function /7 (x) satisfies the following Cauchy problem:
Vi) =g)Viax), 0<x<l1,
Vi) —1=0=(Va) (D).
Thus, g (x) uniquely determines 71(x), 0 < x < 1. Again, from x = %for J/n(¢)de we get

dr B

dx /i)
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