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Abstract

We study the surface diffusion flow acting on a class of general (non-axisymmetric) perturbations of 
cylinders Cr in I R3. Using tools from parabolic theory on uniformly regular manifolds, and maximal regu-
larity, we establish existence and uniqueness of solutions to surface diffusion flow starting from (spatially-
unbounded) surfaces defined over Cr via scalar height functions which are uniformly bounded away from 
the central cylindrical axis. Additionally, we show that Cr is normally stable with respect to 2π -axially-
periodic perturbations if the radius r > 1, and unstable if 0 < r < 1. Stability is also shown to hold in 
settings with axial Neumann boundary conditions.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The surface diffusion flow is a geometric evolution law in which the normal velocity of a 
moving surface equals the Laplace–Beltrami operator of the mean curvature. More precisely, we 
assume in the following that �0 is a closed embedded surface in I R3. Then the surface diffusion 
flow is governed by the law

V (t) = ��(t)H�(t) , �(0) = �0. (1.1)

Here � = {�(t) : t ≥ 0} is a family of hypersurfaces, V (t) denotes the velocity in the normal 
direction of � at time t , while ��(t) and H�(t) stand for the Laplace–Beltrami operator and the 
mean curvature of �(t) (the sum of the principal curvatures in our case), respectively. Both the 
normal velocity and the mean curvature depend on the local choice of the orientation. Here we 
consider the case where �(t) is embedded and encloses a region �(t), and we then choose the 
outward orientation, so that V is positive if �(t) grows and H�(t) is positive if �(t) is convex 
with respect to �(t).

The unknown quantity in (1.1) is the position and the geometry of the surface �(t), which 
evolves in time. Hidden in the formulation of the evolution law (1.1) is a nonlinear partial dif-
ferential equation of fourth order. This will become more apparent below, where the equation is 
stated more explicitly.

It is an interesting and significant fact that the surface diffusion flow evolves surfaces in such 
a way that the volume enclosed by �(t) is preserved, while the surface area decreases (provided, 
of course, these quantities are finite). This follows from the well-known relationships

d

dt
Vol(t) =

∫
�(t)

V (t) dσ =
∫

�(t)

��(t)H�(t) dσ = 0 (1.2)

and

d

dt
A(t) =

∫
�(t)

V (t)H�(t) dσ =
∫

�(t)

(
��(t)H�(t)

)
H�(t) dσ

= −
∫

�(t)

∣∣grad�(t)H�(t)

∣∣2
�(t)

dσ ≤ 0, (1.3)

where Vol(t) denotes the volume of �(t) and A(t) the surface area of �(t), respectively. Hence, 
the preferred ultimate states for the surface diffusion flow in the absence of geometric constraints 
are spheres. It is also interesting to note that the surface diffusion flow can be viewed as the 
H−1-gradient flow of the area functional, a fact that was first observed in [20]. This particular 
structure has been exploited in [29,30] for devising numerical simulations.

The mathematical equations modeling surface diffusion go back to a paper by Mullins [32]
from the 1950s, who was in turn motivated by earlier work of Herring [24]. Since then, the 
surface diffusion flow (1.1) has received wide attention in the mathematical community (and also 
by scientists in other fields), see for instance Asai [6], Baras, Duchon, and Robert [8], Bernoff, 
Bertozzi, and Witelski [9], Cahn and Taylor [11], Cahn, Elliott, and Novick-Cohen [10], Daví and 
Gurtin [14], Elliott and Garcke [17], Escher, Simonett, and Mayer [18], Escher and Mucha [19], 
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