

Available online at www.sciencedirect.com

J. Differential Equations 258 (2015) 3491–3534

Journal of Differential Equations

www.elsevier.com/locate/jde

The Boltzmann equation with frictional force for soft potentials in the whole space

Yuanjie Lei, Ling Wan*

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China Received 24 September 2013; revised 31 December 2014 Available online 7 February 2015

Abstract

This paper is concerned with the Cauchy problem of the Boltzmann equation with frictional force for both cutoff and non-cutoff soft potentials in the whole space and our main purpose is to establish its global solvability result near a given global Maxwellian and to deduce the temporal convergence rates of such a global solution toward the global Maxwellian when initial perturbation is sufficiently small. The analysis is based on the time-weighted energy method building also upon the recent studies of the cutoff Vlasov–Poisson–Boltzmann system [14,15], the non-cutoff Vlasov–Poisson–Boltzmann system [8], and non-cutoff Vlasov–Maxwell–Boltzmann system [9].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main results

1.1. The problem

This paper is concerned with the following Boltzmann equation with external force proportional to the macroscopic velocity u(t, x) in the whole space \mathbb{R}^3 :

^{*} Corresponding author. *E-mail addresses:* leiyuanjie@whu.edu.cn (Y. Lei), ling.wan@whu.edu.cn (L. Wan).

http://dx.doi.org/10.1016/j.jde.2015.01.021

0022-0396/© 2015 Elsevier Inc. All rights reserved.

$$\partial_t F + v \cdot \nabla_x F - \zeta u \cdot \nabla_v F = Q(F, F),$$
$$u = \left(\int_{\mathbb{R}^3} v F dv\right) \left(\int_{\mathbb{R}^3} F dv\right)^{-1}$$
(1.1)

with initial data

$$F(0, x, v) = F_0(x, v).$$
(1.2)

Here $F = F(t, x, v) \ge 0$ stands for the velocity distribution functions for the particles with position $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ and velocity $v = (v_1, v_2, v_3) \in \mathbb{R}^3$ at time $t \ge 0$ and the term ζu represents the frictional force which is proportional to the macroscopic velocity u(t, x) and we can normalize the positive constant ζ to be 1 without loss of generality. The bilinear collision operator Q(F, G) acting only on the velocity variable is defined by

$$Q(F,G)(v) = \int_{\mathbb{R}^3 \times \mathbb{S}^2} \mathbf{B}(v - v_*, \sigma) \big\{ F(v_*') G(v') - F(v_*) G(v) \big\} d\sigma dv_*,$$

where in terms of velocities v_* and v before the collision, velocities v' and v'_* after the collision are defined by

$$v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma, \qquad u' = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma$$

which follow from the conservation of momentum and kinetic energy during the collision process.

The Boltzmann collision kernel $\mathbf{B}(v - v_*, \sigma)$ depends only on the relative velocity $|v - v_*|$ and on the deviation angle θ given by $\cos \theta = \langle \sigma, (v - v_*)/|v - v_*| \rangle$, where $\langle \cdot, \cdot \rangle$ is the usual dot product in \mathbb{R}^3 . As in [1–3,21], without loss of generality, we suppose that $\mathbf{B}(v - v_*, \sigma)$ is supported on $\cos \theta \ge 0$. Throughout the paper, the collision kernel $\mathbf{B}(v - v_*, \sigma)$ is further supposed to satisfy the following assumptions:

(A1) **B** $(v - v_*, \sigma)$ takes the product form in its argument as

$$\mathbf{B}(v - v_*, \sigma) = \Phi(|v - v_*|)\mathbf{b}(\cos\theta)$$

with the kinetic part Φ and the angular part **b** being non-negative functions.

- (A2) The angular part $\mathbf{b}(\cos\theta)$ is assumed to satisfy one of the following conditions:
 - $\mathbf{b}(\cos\theta)$ satisfies Grad's angular cutoff assumption $0 \le \mathbf{b}(\cos\theta) \le C |\cos\theta|$;
 - for the non-cutoff case, the angular function $\sigma \to \mathbf{b}(\langle \sigma, (v v_*)/|v v_*| \rangle)$ is not integrable on \mathbb{S}^2 , i.e.

$$\int_{\mathbb{S}^2} \mathbf{b}(\cos\theta) d\sigma = 2\pi \int_0^{\pi/2} \sin\theta \mathbf{b}(\cos\theta) d\theta = \infty$$

3492

Download English Version:

https://daneshyari.com/en/article/4609756

Download Persian Version:

https://daneshyari.com/article/4609756

Daneshyari.com