
Architectural design and FPGA implementation of radix-4 CORDIC processor

Kaushik Bhattacharyya *, Rakesh Biswas, Anindya Sundar Dhar, Swapna Banerjee
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, WB, India

a r t i c l e i n f o

Article history:
Available online 20 January 2010

Keywords:
Architectural design
CORDIC
FPGA implementation
Latency
Radix-4
Speed
Throughput

a b s t r a c t

A new scaled radix-4 CORDIC architecture that incorporates pipelining and parallelism is presented. The
latency of the architecture is n/2 clock cycles and throughput rate is one valid result per n/2 clocks for n
bit precision. A 16 bit radix-4 CORDIC architecture is implemented on the available FPGA platform. The
corresponding latency of the architecture is eight clock cycles and throughput rate is one valid result per
eight clock cycles. The entire scaled architecture operates at 56.96 MHz of clock rate with a power con-
sumption of 380 mW. The speed can be enhanced with the upgraded version of FPGA device. A speed-
area optimized processor is obtained through this architecture and is suitable for real time applications.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Co-Ordinate Rotation Digital Computer (CORDIC) algorithm was
originally proposed by Volder [1] in 1959 and later generalized by
Walther [2] in 1971 for computation of logarithms, exponentials
and square-root functions along with the trigonometric functions
like sine, cosine and arctangent. It is an iterative algorithm for
the calculation of the rotation of a two-dimensional vector in lin-
ear, circular and hyperbolic coordinate systems. The rotation is car-
ried out by means of a sequence of iterations in each of which one
rotation over a prefixed elementary angle (micro rotation) is eval-
uated by means of addition and shift operations. The rotated vector
is scaled by a constant factor that must be compensated [3]. The
number of iteration of conventional radix-2 CORDIC architecture
limits its architecture to use in high-speed application. So the
development of high-radix CORDIC algorithm is essential for
reducing the number of iterations i.e., the reduction of latency time
of CORDIC calculation with a reasonable increment of hardware
complexity. The proper control of the tradeoff between latency
time and the hardware complexity enable a designer to use higher
radix CORDIC unit [4] in place of the conventional radix-2 CORDIC
unit in high-speed application purposes [5]. In 1996, Antelo et al.
[6] proposed a high-radix CORDIC in an effort to reduce the num-
ber of iterations. With the increment of radix, the number of iter-
ations for a given precision is reduced, resulting in a potentially
faster execution. However, two problems appear: the complexity
of the selection function and the compensation of a variable scale
factor. Although the full radix-4 algorithm is efficient compared

to the standard radix-2 version, the scale factor overhead causes
its improvement to be limited. The minimization of the computa-
tion overhead of the scale factor compensation has been attempted
by different researchers [7–13].

In this paper, an existing radix-4 CORDIC algorithm is taken into
account for the hardware implementation. Here the rotation is
being completed within five clock cycles for 16 bit precision. The
Scale factor computation is carried out in parallel to the rotation.
The architecture possesses some specialties. The entire architec-
ture is implemented in FPGA platform. Finally the compensated
output with 32 bit output bit precision is available after eight clock
cycle.

The radix-4 CORDIC processor design has been detailed in the
subsequent sections of this paper. Section 2 is dedicated for the
recapitulation of the radix-4 CORDIC algorithm in rotation mode
along with parallel scale factor computation to minimize the la-
tency time. Section 3 provides a detail of the proposed architecture
of the compensated radix-4 CORDIC unit. Section 4 is basically for
the implementation and discussion of the designed CORDIC pro-
cessor in FPGA environment. Section 5 deals with the performance
evaluation of the implemented architecture with respect to the
published references. Finally some concluding remarks are pro-
vided in Section 6.

2. Radix-4 CORDIC algorithm

When a radix-4 is used instead of radix-2, the total number of
iterations of the CORDIC algorithm is halved. The iterative equa-
tions of the CORDIC algorithm are extended to radix-4 [6] as
follows:

0141-9331/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2010.01.002

* Corresponding author. Tel.: +91 9434252606.
E-mail address: kaushik@ece.iitkgp.ernet.in (K. Bhattacharyya).

Microprocessors and Microsystems 34 (2010) 96–101

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2010.01.002
mailto:kaushik@ece.iitkgp.ernet.in
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


The radix-4 CORDIC equations are given below:

xiþ1 ¼ xi � ri4
�iyi; yiþ1 ¼ yi þ ri4

�ixi; ziþ1 ¼ zi � ai½ri� ð1Þ

where ri 2{�2,�1, 0, 1, 2}, ai[ri] = tan�1(ri r�i). Here r is the radix of
the CORDIC. x0 and y0 are the coordinates of the initial vector and z0

is the rotation angle. Consequently, xi+1, yi+1 are the coordinates of
the vector resulting from applying i + 1 micro rotation and zi+1 is
the angle remaining to be rotated. The final coordinates are scaled
by

K�1 ¼
Y
iP0

ki ¼
Y
iP0

1þ r2
i 4�2i

� ��1=2
ð2Þ

The scale factor is not constant as it depends on the sequence of ri.
In the case of the radix-4 algorithm, this value ranges from K = 1.0
to K = 2.52 [9].

Now, we may write a variable wi as,

wi ¼ 4izi ð3Þ

The Eq. (3) may be needed to prove that the variable z is bounded in
each of the rotations.

The selection interval for different values of iteration (1) can be
obtained [6].

For i = 0,

r0 ¼

þ2 if 5=8 6 cW 0

þ1 if 3=8 6 cW 0 < 5=8

0 if � 1=2 6 cW 0 < 3=8

�1 if � 7=8 6 cW 0 < �1=2

�2 if cW 0 < �7=8

8>>>>>>>><
>>>>>>>>:

ð4Þ

and for i > 0,

ri ¼

þ2 if cW i P 3=2

þ1 if 1=2 6 cW i < 3=2

0 if � 1=2 6 cW i < 1=2

�1 if � 3=2 6 cW i < �1=2

�2 if cW i < �3=2

8>>>>>>>><
>>>>>>>>:

ð5Þ

The intervals verify the continuity condition. Here, cW i is the
estimate of wi with three most significant bits. The selection func-
tion described is valid both for carry-save redundant arithmetic
and non redundant arithmetic [14].

2.1. Scale factor

In radix-4 algorithm, the traditional scaling iteration technique
cannot be used as in radix-2 CORDIC processors, where it is to be
done by a direct multiplication. The procedure to calculate the
scale factor is as follows. The computation of the scale factor is car-
ried out in parallel and will be completed by the first (n/4 + 1) iter-
ations. If the iterative steps following the calculation of the scale
factor are observed, then a possibility for parallel scale factor com-
pensation can be explored.

In this paper, the inverse of the scale factor (K�1) is computed in
parallel for (n/4 + 1) iterations. After (n/4 + 1) iteration, it is multi-
plied with the unscaled X and Y coordinates to achieve the scaled
radix-4 CORDIC output. Through the concurrent scale factor com-
pensation procedure adopted in place of compensation in linear
mode [6], it has been possible to reduce the latency time. The
architectural design for implementing the algorithm is described
in the next section.

3. Proposed architecture [15]

This section presents the proposed architecture of the iterative
radix-4 CORDIC processor. As the widths of the data paths and reg-
isters in the majority of computer architectures happen to be mul-
tiples of 16, so the proposed scheme is designed throughout for 16
bit precision. Although the unscaled rotation and compensation
part presented in this architecture is valid for 16 bit precision, it
can be translated into the 32 bit iterative architecture by simply
extending the word length from 16 to 32.

The proposed compensated architecture of the radix-4 CORDIC
processor is comprised of the ‘Unscaled CORDIC architecture’ and
the ‘K�1computation architecture’. Basically in this architecture
there is a circular mode of operations for eight iterations. The scale
factor computation part is also operating concurrently to generate
the reciprocal of the scale factor, K�1 within five cycles (i.e., n/
4 + 1). After five micro rotations, the two unscaled coordinate val-
ues are compensated by the already computed inverse of the scale
factor.

3.1. Unscaled CORDIC architecture

The Unscaled CORDIC architecture (Fig. 2) consists of a pre-pro-
cessing unit where an initial p/2 rotation can be carried out in or-
der to obtain a convergence range of [�p,p]. Basically it consists of
three processing paths for the x, y, w coordinates and a selection
function path. During cycle 0, the pre-processing unit carries out
a rotation of p/2 and by means of MUXes 1, 2 and 3, the 16 bit val-
ues of BX, BY, Z are registered. There it consumes an extra clock cy-
cle to load the three values from out side of the CORDIC processor.
The KCKT4 block is the in charge of generating extra delay of one
clock period at the 0th count of the MOD 8 counter. The output val-
ues of the registers are bx1, by1 and bz1.There are two hard right
shifters viz. Rshifter1 and Rshifter2. The count value at each clock
edge of the MOD 8 counter is fed to the KCKT3 block which is gen-
erating a 4 bit value (count_out) at each clock edge. This 4 bit
count_out will work as the shift controller of all hard shifters.
The barrel shifters carry out a right shift of d(d = 2 � iteration) of
the registered outputs, bx2 and by2 which are 0 in this case (factor
of 4� in Eq. (1)), and those will be incremented in every cycle filling
the vacant left hand side with sign value. On the other hand the Z
coordinate is left shifted by the 16 bit left shifter (L shifter) by an
amount of e(e = 2 � iteration) which is also 0 in the 0th iteration

Fig. 1. Layout of the scaled radix-4 CORDIC in XCV1000BG560 FPGA device.

K. Bhattacharyya et al. / Microprocessors and Microsystems 34 (2010) 96–101 97



Download	English	Version:

https://daneshyari.com/en/article/460986

Download	Persian	Version:

https://daneshyari.com/article/460986

Daneshyari.com

https://daneshyari.com/en/article/460986
https://daneshyari.com/article/460986
https://daneshyari.com/

