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Abstract

We study Lie–Hamilton systems on the plane, i.e. systems of first-order differential equations describing 
the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of 
planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification 
of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, 
and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining 
which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we pro-
vide the complete local classification of Lie–Hamilton systems on the plane. We present and study through 
our results new Lie–Hamilton systems of interest which are used to investigate relevant non-autonomous 
differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse 
biomathematical models, the Milne–Pinney equations, second-order Kummer–Schwarz equations, complex 
Riccati equations and Buchdahl equations.
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1. Introduction

The relevance of nonautonomous differential equations is undoubtable both from the math-
ematical viewpoint and also from their overwhelming applications. In this work we will get 
a deeper insight into a particular class of systems of differential equations, the so-called Lie 
systems, which have drawn some attention during the past recent years due to their geometric 
properties and applications. For instance, the general solution for a Lie system can be obtained 
in terms of a superposition rule (see [13] and references therein).

More explicitly, a Lie system is a system of first-order differential equations describing the in-
tegral curves of a t -dependent vector field taking values in a finite-dimensional real Lie algebra of 
vector fields, a Vessiot–Guldberg Lie algebra [13,30]. Vessiot–Guldberg Lie algebras determine 
the main properties of Lie systems, e.g. Lie systems related to a solvable Vessiot–Guldberg Lie 
algebra of right-invariant vector fields on a Lie group are integrable [12]. Although Lie systems 
are a quite restricted class of differential equations [13,25], very recurrent systems appearing 
in the literature, e.g. most types of Riccati and Kummer–Schwarz equations, can be studied 
through these systems [9,40]. In this paper, we aim to study Lie–Hamilton systems [1,4,13,15], 
which form a relevant subclass of Lie systems. Our concern in them relies on their frequent ap-
pearance in classical mechanics and their special characteristics: integrability, symmetries and 
superposition rules [1,4,10,32].

A natural problem in the theory of Lie systems is the classification of Lie systems on a fixed 
manifold, which amounts to classifying finite-dimensional Lie algebras of vector fields on it. Lie 
accomplished the local classification of finite-dimensional real Lie algebras of vector fields on 
the real line [29]. More precisely, he showed that each such a Lie algebra is locally diffeomorphic 
to a Lie subalgebra of 〈∂x, x∂x, x2∂x〉 � sl(2) on a neighbourhood of each generic point x0 of the 
Lie algebra [23,29]. He also performed the local classification of finite-dimensional Lie algebras 
of vector fields on C over the complex numbers [29] and, by an ingenious geometric argument 
and the previous result [23], the classification of finite-dimensional Lie algebras of vector fields 
on R2 over the reals in [31, p. 360].

Lie’s local classification on the plane presented some unclear points which were misunder-
stood by several authors during the following decades. Later on, A. González-López, N. Kamran 
and P.J. Olver retook the problem and provided a clearer insight in [23]. Precisely, they proved 
in a modern geometric manner that every non-zero Lie algebra of vector fields on the plane is lo-
cally diffeomorphic around each generic point to one of the finite-dimensional real Lie algebras 
given in Section 3 of this work. For simplicity, we refer to this result as the GKO classification.

As every Vessiot–Guldberg Lie algebra on the plane is locally diffeomorphic around a generic 
point to a Lie algebra of the GKO classification, every Lie system on the plane is locally dif-
feomorphic to a Lie system taking values in a Vessiot–Guldberg Lie algebra within the GKO 
classification. So, the local properties of all Lie systems on the plane can be studied through the 
Lie systems related to the GKO classification. As a consequence, we say that the GKO classifi-
cation gives the local classification of Lie systems on the plane.

The minimal Lie algebra of a Lie system is its smallest Vessiot–Guldberg Lie algebra [13]. In 
this paper we analyse the general properties of minimal Lie algebras of Lie–Hamilton systems 
on the plane. We demonstrate that they are, around generic points, Lie algebras of Hamiltonian 
vector fields with respect to a symplectic structure. We also provide several results allowing us 
to determine their algebraic structure.

It is known that each Lie–Hamilton system on a manifold N gives rise to a t -dependent 
Hamiltonian h : (t, x) ∈ R × N �→ ht (x) ∈ N whose functions {ht }t∈R and their successive Lie 
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