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Abstract

In this paper, systems of quasilinear elliptic equations are investigated, which involve critical homoge-
neous nonlinearities and deferent Hardy-type terms. By variational methods and careful analysis, positive 
minimizers of the related best Sobolev constants are found and the existence of positive solutions to the 
systems is verified. The results are new even in the case p = 2.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we mainly study the following system of quasilinear elliptic equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�pu − μ1
|u|p−2u

|x|p = ηα

p∗ |u|α−2|v|βu + |u|p∗−2u + 1

p
Q′

s(u, v), in �,

−�pv − μ2
|v|p−2v

|x|p = ηβ

p∗ |u|α|v|β−2v + |v|p∗−2v + 1

p
Q′

t (u, v), in �,

u = v = 0 on ∂�,

(1.1)
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where � ⊂ R
N is an open bounded domain with smooth boundary such that 0 ∈ �, �p· :=

div(|∇ · |p−2∇·) is the p-Laplace operator, p∗ := Np
N−p

is the critical Sobolev exponent, Q′
s, Q

′
t

are partial derivatives of the homogeneous C1-function Q(s, t):

Q(s, t) := a1|s|p + a2p|s|p−2st + a3p|t |p−2st + a4|t |p, (s, t) ∈R
2, p ≥ 2,

and the parameters satisfy

(H1) 1 < p < N , η > 0, 0 ≤ μ2 ≤ μ1 < μ̄ := (
N−p

p
)p , α, β > 1, α + β = p∗.

(H2) ai > 0, 1 ≤ i ≤ 4, and there exist constants λ1, λ2 > 0 such that

λ1(|u|p + |v|p) ≤ Q(u,v) ≤ λ2(|u|p + |v|p), ∀ (u, v) ∈ W × W.

Let W := W
1,p

0 (�) be the completion of C∞
0 (�) with respect to (

∫
�

|∇ · |p dx)1/p . Energy 
functional of (1.1) is defined on the product space W 2 := W × W by

J (u, v) := 1

p

∫
�

(
E(u,v) − Q(u,v)

)
dx − 1

p∗

∫
�

F(u, v)dx,

where

E(u,v) := |∇u|p + |∇v|p − μ1|u|p + μ2|v|p
|x|p ,

F (u, v) := |u|p∗ + |v|p∗ + η|u|α|v|β.

Then for all p ≥ 2, J ∈ C1(W 2, R) and (u, v) ∈ W 2 is said to be a solution to (1.1) if

(u, v) �= (0,0), 〈J ′(u, v), (ϕ,φ)〉 = 0, ∀ (ϕ,φ) ∈ W 2,

where J ′(u, v) denotes the Fréchet derivative of J at (u, v).
Problem (1.1) is related to the Hardy inequality ([15]):

∫
RN

|u|p
|x|p dx ≤ 1

μ̄

∫
RN

|∇u|p dx , ∀ u ∈ C∞
0 (RN). (1.2)

By the Hardy inequality, the operator L = −(�p · + μ
|x|p | · |p−2·) is positive on W for all μ < μ̄

and the first eigenvalue �1(μ) of L on W is well defined.
Let D := D1,p(RN) be the completion of C∞

0 (RN) with respect to (
∫
RN |∇ · |p dx)1/p . For 

all μ < μ̄, by (H1) and (1.2) the following best Sobolev-type constants are well defined and are 
crucial for the study of (1.1):

S(μ) := inf
u∈D\{0}

∫
RN

(|∇u|p − μ
|u|p
|x|p

)
dx(∫

RN |u|p∗dx
) p

p∗
, (1.3)

S(μ1,μ2) := inf
(u,v)∈D2\{(0,0)}

∫
RN E(u, v)dx(∫

RN F (u, v)dx
) p

p∗
. (1.4)

By (1.3), for all u ∈ D \ {0}, testing (1.4) with (u, 0) we have S(μ1, μ2) ≤ S(μ1).
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