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Abstract

In this paper, we investigate the properties of traveling waves to a class of lattice differential equations 
for cellular neural networks with multiple delays. Following the previous study [38] on the existence of the 
traveling waves, here we focus on the uniqueness and the stability of these traveling waves. First of all, by 
establishing the a priori asymptotic behavior of traveling waves and applying Ikehara’s theorem, we prove 
the uniqueness (up to translation) of traveling waves φ(n − ct) with c ≤ c∗ for the cellular neural networks 
with multiple delays, where c∗ < 0 is the critical wave speed. Then, by the weighted energy method to-
gether with the squeezing technique, we further show the global stability of all non-critical traveling waves 
for this model, that is, for all monotone waves with the speed c < c∗, the original lattice solutions con-
verge time-exponentially to the corresponding traveling waves, when the initial perturbations around the 
monotone traveling waves decay exponentially at far fields, but can be arbitrarily large in other locations.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Cellular neural networks (CNN) were first proposed by Chua and Yang [8,9] as an achievable 
alternative to fully-connected neural networks in electric circuit systems. Since then, the study of 
cellular neural networks has been one of hot research topics due to their many significant applica-
tions to a broad scope of problems arising from, for example, image and video signal processing, 
robotic and biological visions, and higher brain functions [7–9,29]. The infinite system of the 
ordinary differential equations for the one-dimensional CNN with a neighborhood of radius m
but without inputs is of the form

x′
n(t) = −xn(t) + z +

m∑
i=1

aif (xn−i (t)) + αf (xn(t)) +
m∑

i=1

βif (xn+i (t)), (1.1)

for n ∈ Z, m ∈ N. Here, xn(t) denotes the state function of cell Cn at time t . The quantity z
is called a threshold or bias term and is related to independent voltage sources in electric cir-
cuits. The nonnegative constant coefficients ai , α and βi of the output function f constitute the 
so-called space-invariant template that measure the synaptic weights of self-feedback and neigh-
borhood interactions. When the cells are taken account of the instantaneous self-feedback and 
neighborhood interaction with distributed delays, because of the finite switching speed of signal 
transmission, the dynamic system can be presented by the following nonlocal lattice differential 
equation with multi-delays [32,38]

x′
n(t) = −xn(t) +

m∑
i=1

ai

τ∫
0

Ji(y)f (xn−i (t − y))dy + α

τ∫
0

Jm+1(y)f (xn(t − y))dy

+
l∑

j=1

βj

τ∫
0

Jm+1+j (y)f (xn+j (t − y))dy (1.2)

for n ∈ Z, m, l ∈ N, where Ji : [0, τ ] → [0, ∞) is the density function for delay effect of 
the neighbors. Particularly, if the kernels are taken as some delta-functions Ji = δ(y − τi), 
i = 1, 2, · · · , m + l + 1, where τi > 0 are the time-delays, then the equation (1.2) is reduced to 
the following multiple time-delayed lattice differential equation for the cellular neural networks 
[12–16,19,30]

x′
n(t) = −xn(t) +

m∑
i=1

aif (xn−i (t − τi)) + αf (xn(t − τm+1))

+
l∑

j=1

βjf (xn+j (t − τm+1+j )), (1.3)

subjected to the initial data

xn(s) = x0
n(s), s ∈ [−r,0], r = max

1≤i≤m+1+l
{τi}. (1.4)
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