



Available online at www.sciencedirect.com



Journal of Differential Equations

J. Differential Equations 260 (2016) 268-303

www.elsevier.com/locate/jde

## Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays

Zhaoquan Xu, Dongmei Xiao\*,1

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China Received 13 March 2015; revised 6 July 2015 Available online 9 September 2015

## Abstract

A class of reaction diffusion equation with spatio-temporal delays is systematically investigated. When the reaction function of this equation is nonlinear without monotonicity, it is shown that there exists a spreading speed  $c^* > 0$  for this equation such that  $c^*$  is linearly determinate and coincides with the minimal wave speed of traveling waves, and that this equation admits a unique traveling wave (up to translation) with speed  $c > c^*$  and no traveling wave with  $c < c^*$ . © 2015 Elsevier Inc. All rights reserved.

MSC: 35K57; 35R10; 92D25

Keywords: Reaction diffusion equation; Spatio-temporal delays; Spreading speeds; Traveling waves; Uniqueness

## 1. Introduction

In the study of population dynamics and disease spread, the reaction diffusion equations with spatially or temporally nonlocal delays are often used to describe biological and physical evolu-

<sup>6</sup> Corresponding author.

http://dx.doi.org/10.1016/j.jde.2015.08.049

0022-0396/© 2015 Elsevier Inc. All rights reserved.

*E-mail addresses:* xuzhqmaths@126.com (Z. Xu), xiaodm@sjtu.edu.cn (D. Xiao).

<sup>&</sup>lt;sup>1</sup> Research supported by the National Natural Science Foundation of China (No. 11371248 & No. 11431008) and the RFDP of Higher Education of China grant (No. 20130073110074).

tion process, see, e.g., [1,2,8,17,18,32,33] and the references therein. In this paper, we consider a class of reaction diffusion equations with spatio-temporal delays as follows

$$w_t(t,x) = D\Delta w(t,x) + F\left(w(t,x), \int_0^\infty \int_{-\infty}^\infty \mathcal{K}(s,y)f(w(t-s,x-y))\,dyds\right), \quad (1.1)$$

where  $x \in \mathbb{R}$ ,  $\Delta$  is the Laplacian operator on  $\mathbb{R}$  and D is a positive diffusion coefficient.  $\mathcal{K}$  is a kernel function, which is a continuous nonnegative function with  $\mathcal{K}(t, -x) = \mathcal{K}(t, x)$  and  $\int_{0}^{\infty} \int_{0}^{\infty} \mathcal{K}(s, y) dy ds = 1$ ; f is Lipschitz continuous on any compact interval in nonnegative real  $\int_{0}^{\infty} \int_{0}^{\infty} \mathcal{K}(s, y) dy ds = 1$ .

axis  $\mathbb{R}_+$  with f(0) = 0 and f(x) > 0 for x > 0; and  $F \in C^2(\mathbb{R}^2_+, \mathbb{R})$ .

Some mathematical models in the literature may be described by (1.1) with appropriate choices of *F*,  $\mathcal{K}$  and *f*. For example, taking F(x, y) = -g(x) + y, Eq. (1.1) becomes

$$w_t(t,x) = D\Delta w(t,x) - g(w(t,x)) + \int_0^\infty \int_{-\infty}^\infty \mathcal{K}(s,y) f(w(t-s,x-y)) dy ds, \qquad (1.2)$$

which was studied as the evolution model of the adult population of a single species with distributed maturation delay in Gourley and So [18] and Al-Omari and Gourley [2]. Choosing F(x, y) = -ax + b(1 - x)y and f(x) = x, Eq. (1.1) can be reduced to the following vectordisease model derived by Ruan and Xiao [33]

$$w_t(t,x) = D\Delta w(t,x) - aw(t,x) + b[1 - w(t,x)] \int_0^\infty \int_{-\infty}^\infty \mathcal{K}(s,y)w(t-s,x-y)dyds.$$
(1.3)

When  $F(x, y) = -\tau x + \beta \tau y e^{-y}$  and f(x) = x, (1.1) can be reduced to the Nicholson's Blowflies equation with spatio-temporal delays

$$w_t(t,x) = D\Delta w(t,x) - \tau w(t,x) + \beta \tau [(\mathcal{K} * w)(t,x)] \exp[-(\mathcal{K} * w)(t,x)], \quad (1.4)$$

which was studied by Li et al. [26] and Lin [25], here  $(\mathcal{K} * w)(t, x)$  is defined by

$$(\mathcal{K} * w)(t, x) = \int_{0}^{\infty} \int_{-\infty}^{\infty} \mathcal{K}(s, y)w(t - s, x - y)dyds.$$

If  $\mathcal{K}(t, x) = k(t)\delta(x)$  with  $\delta(\cdot)$  is the Dirac delta function, (1.4) can further be reduced to the distributed time-delayed Nicholson's Blowflies equation proposed and studied by Gourley [19], and Gourley and Ruan [20]

$$w_t(t,x) = D\Delta w(t,x) - \tau w(t,x) + \beta \tau [(k*w)(t,x)] \exp[-(k*w)(t,x)],$$
(1.5)

Download English Version:

## https://daneshyari.com/en/article/4609889

Download Persian Version:

https://daneshyari.com/article/4609889

Daneshyari.com