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Abstract

As FPGAs are increasingly being used for floating-point computing, the feasibility of a library of floating-point elementary functions for
FPGAs is discussed. An initial implementation of such a library contains parameterized operators for the logarithm and exponential
functions. In single precision, those operators use a small fraction of the FPGA’s resources, have a smaller latency than their software equiv-
alent on a high-end processor, and provide about ten times the throughput in pipelined version. Previous work had shown that FPGAs
could use massive parallelism to balance the poor performance of their basic floating-point operators compared to the equivalent in
processors. As this work shows, when evaluating an elementary function, the flexibility of FPGAs provides much better performance than
the processor without even resorting to parallelism. The presented library is freely available from http://www.ens-lyon.fr/LIP/Arenaire/.
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1. Introduction

A recent trend in FPGA computing is the increasing use of
floating-point. Many libraries of floating-point operators for
FPGAs now exist [18,8,1,11,6], typically offering the basic
operators +, —, X, / and NE Published applications include
matrix operations, convolutions and filtering. As FPGA
floating-point is typically clocked 10 times slower than the
equivalent in contemporary processors, only massive paral-
lelism (helped by the fact that the precision can match closely
the application’s requirements) allows these applications to
be competitive to software equivalent [13,5,10].

More complex floating-point computations on FPGAs
will require good implementations of elementary functions
such as logarithm, exponential, trigonometric, etc. These
are the next useful building blocks after the basic opera-
tors. This paper describes both the logarithm and exponen-
tial functions, a first attempt to a library of floating-point
elementary functions for FPGAs.
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Elementary functions are available for virtually all com-
puter systems. There is currently a large consensus that
they should be implemented in software [17]. Even proces-
sors offering machine instructions for such functions
(mainly the x86/x87 family) implement them as micro-
code. On such systems, it is easy to design faster software
implementations: Software can use large tables which
would not be economical in hardware [19]. Therefore, no
recent instruction set provides instructions for elementary
functions.

Implementing floating-point elementary functions on
FPGAs is a very different problem. The flexibility of the
FPGA paradigm allows to use specific algorithms which
turn out to be much more efficient than a processor-based
implementation. We show in this paper that a single preci-
sion function consuming a small fraction of FPGA
resources has a latency equivalent to that of the same func-
tion in a 2.4 GHz PC, while being fully pipelinable to run
at 100 MHz. In other words, where the basic floating-point
operator (+,—,x,/, and /) is typically 10 times slower
on an FPGA than its PC equivalent, an elementary func-
tion will be more than 10 times faster for precisions up to
single precision.
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Writing a parameterized elementary function is a com-
pletely new challenge: to exploit this flexibility, one should
not use the same algorithms as used for implementing ele-
mentary functions in computer systems [19,15,14]. This
paper describes an approach to this challenge, which builds
upon previous work dedicated to fixed-point elementary
function approximations (see [7] and references therein).

The authors are aware of only two previous works on
floating-point elementary functions for FPGAs, studying
the sine function [16] and studying the exponential function
[9]. Both are very close to a software implementation. As
they do not exploit the flexibility of FPGAs, they are much
less efficient than our approach, as Section 4 will show.

1.1. Notations

The input and output of our operators will be
(3 + wg + wp)-bit floating-point numbers encoded in the
freely available FPLibrary format [6] as follows:

e Fy: the wy least significant bits represent the fractional
part of the mantissa My =1.Fy.

e Ey: the following wg-bit word is the exponent, biased by
Ey=2%"1_1.

e Sy the next bit is the sign of X.

e cxny: the two most significant bits of X are internal flags
used to deal more easily with exceptional cases, as
shown in Table 1.

2. A floating-point logarithm
2.1. Evaluation algorithm

2.1.1. Range reduction

We consider here only the case where X is a valid posi-
tive floating-point number (i.e., exny =01 and Sy=0),
otherwise the operator simply returns NaN. We therefore
have:

X=1Fy 20",
If we take R =logX, we obtain
R =1og(1.Fy)+ (Ex — Ey) - log 2.

In this case, we only have to compute log(l.Fy) with
1.Fy €[1,2). The product (Ey — Ey) -log2 is then added
back to obtain the final result.

Table 1

Value of X according to its exception flags exny

exny X

00 0

01 (=1)% - 1.Fy - 2B Fo
10 (-1)% . 0

11 NaN (Not a Number)

To avoid catastrophic cancellation when adding the two
terms, and consequently maintain low error bounds, we use
the following equation to center the output range of the
fixed-point log function around 0:

_ J log(1.Fx) + (Ex — Eo) - log2, when 1.Fy € [1,V2),
| log (M) + (1 + Ex — Ey) - log2, when 1.Fx € [V2,2).
1

(1)

We therefore have to compute log M with the input oper-
and M € [v/2/2,+/2), which gives a result in the interval
[—log2/2, log2/2).

We also note in the following E = Ey— E; when
1.Fy € [I,V/2), or E=1+ Ey — Ey when 1.Fy € [v/2,2).

2.1.2. Fixed-point logarithm

As we are targeting floating-point, we need to com-
pute log M with enough accuracy to guarantee faithful
rouding, even after a possible normalization of the result.
As log M can be as close as possible to 0, a straightfor-
ward approach would require at least a precision of 2wp
bits, as the normalization could imply a left shift of up
to wy bits, and wy bits would still be needed for the final
result.

But one can remark that when M is close to 1, log M is
close to M — 1. Therefore, a two-step approach consisting
of first computing logM/(M — 1) with a precision of
wr+ go bits and then multiplying this result by M — 1
(which is computed exactly) leads to the targeted accuracy
at a smaller cost.

The function f(M)=logM/(M — 1) is then computed
by a generic polynomial method [7]. The order of the con-
sidered polynomial obviously depends on the precision wp.

2.1.3. Reconstruction

As the evaluation of f(M) is quite long, we can in
parallel compute the sign of the result: if E=0, then
the sign will be the sign of log M, which is in turn posi-
tive if M >1 and negative if M <1. And if E#0, as
logM € [v/2/2,1/2), the sign will be the sign of E-log2,
which is the sign of E.

We can then compute in advance the opposite of E and
M — 1 and select them according to the sign of the result.
Therefore, after the summation of the two products
E-log2 and Y=f(M) (M — 1), we obtain Z the absolute
value of the result.

The last steps are of course the renormalization and
rounding of this result, along with the handling of all the
exceptional cases.

2.2. Architecture

The architecture of the logarithm operator is given on
Fig. 1. It is a straightforward implementation of the algo-
rithm presented in Section 2.1. Due to its purely sequential
dataflow, it can be easily pipelined. The values for the two
parameters go and g; are discussed in Section 2.3.
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