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Abstract

In this paper, we prove that the linearized system of elliptic triangle homographic solution of planar 
charged three-body problem can be transformed to that of the elliptic equilateral triangle solution of the 
planar classical three-body problem. Consequently, the results of Martínez, Samà and Simó (2006) [15] and 
results of Hu, Long and Sun (2014) [6] can be applied to these solutions of the charged three-body problem 
to get their linear stability.
© 2015 Elsevier Inc. All rights reserved.
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1. Main results

We consider the charged planar three-body problem concerns of 3 point particles endowed 
with a positive mass mj ∈ R+ = {r ∈ R | r > 0} and an electrostatic charge of any sign ej ∈ R, 
j = 1, 2, 3, moving under the influence of the respective Newtonian and Coulombian force. 
Denote by q1, q2, q3 ∈ R2 the position vectors of the three particles respectively. By Newton’s 
second law, the law of universal gravitation and Coulombian’s law, the system of equations for 
this problem is

miq̈i =
∑
j �=i

mimj − eiej

|qi − qj |3 (qj − qi) = ∂U(q)

∂qi

, for i = 1,2,3, (1.1)

where U(q) = U(q1, q2, q3) = ∑
1≤i<j≤3

mimj −eiej

|qi−qj | is the potential or force function by using 

the standard norm | · | of vectors in R2. For periodic solutions with period 2π , the system (1.1)
is the Euler–Lagrange equation of the action functional

A(q) =
2π∫

0

[
3∑

i=1

mi |q̇i (t)|2
2

+ U(q(t))

]
dt

defined on the loop space W 1,2(R/(2πZ), X̂ ), where

X̂ =
{

q = (q1, q2, q3) ∈ (R2)3

∣∣∣∣∣
3∑

i=1

miqi = 0, qi �= qj , ∀i �= j

}

is the configuration space of the planar three-body problem. Periodic solutions of (1.1) corre-
spond to critical points of the action functional A.

It is a well-known fact that (1.1) can be reformulated as a Hamiltonian system. Let 
p1, p2, p3 ∈ R2 be the momentum vectors of the particles respectively. The Hamiltonian sys-
tem corresponding to (1.1) is

ṗi = −∂H

∂qi

, q̇i = ∂H

∂pi

, for i = 1,2,3, (1.2)

with Hamiltonian function

H(p,q) = H(p1,p2,p3, q1, q2, q3) =
3∑

i=1

|pi |2
2mi

− U(q1, q2, q3). (1.3)

Note that if all charges are zero, the problem reduces to the classical Newtonian one. The 
charged problem has a more complicated dynamical behavior.

Central configurations are basic topics which help understanding the complexity of the 
charged problem. It is well known that, in the classical Newtonian three-body problem, there are 
five central configurations: two of them are equilateral triangles and three of them are collinear. 
In the charged problem, Pérez-Chavela, Saari, Susin and Yan ([17], 1996) proved that there 
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