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Abstract

We provide a comprehensive stability analysis of the thermoelastic Bresse system (also known as the 
circular arch problem). In particular, assuming a temperature evolution of Gurtin–Pipkin type, we establish 
a necessary and sufficient condition for exponential stability in terms of the structural parameters of the 
problem. As a byproduct, a complete characterization of the longtime behavior of Bresse-type systems 
with Fourier, Maxwell–Cattaneo and Coleman–Gurtin thermal laws is obtained. Our main theorem also 
subsumes some recent achievements in the stability properties of thermoelastic Timoshenko systems with 
classical and nonclassical heat conduction.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Given a real interval I = [0, L], we consider the thermoelastic Bresse system with Gurtin–
Pipkin thermal dissipation
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ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γ θx = 0,

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0,

ρ3θt − k1

∞∫
0

g(s)θxx(t − s)ds + γψtx = 0,

(1.1)

in the unknowns variables

ϕ,ψ,w, θ : (x, t) ∈ I× [0,∞) �→R.

Here, ρ1, ρ2, ρ3 as well as b, l, γ, k, k0, k1 are strictly positive fixed constants, while g is a 
bounded convex summable function on [0, ∞) of total mass

∞∫
0

g(s)ds = 1

having the explicit form

g(s) =
∞∫
s

μ(r)dr,

where μ : R+ = (0, ∞) → [0, ∞), the so-called memory kernel, is a nonincreasing absolutely 
continuous function such that

μ(0) = lim
s→0

μ(s) ∈ (0,∞).

In particular, μ is summable on R+ with

∞∫
0

μ(s)ds = g(0),

and the requirement that g has total mass 1 translates into

∞∫
0

sμ(s)ds = 1.

Moreover, the kernel μ is supposed to satisfy the additional assumption

μ′(s) + νμ(s) ≤ 0 (1.2)
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