

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 258 (2015) 4062–4101

www.elsevier.com/locate/jde

A sharp inequality of Trudinger–Moser type and extremal functions in $H^{1,n}(\mathbb{R}^n)$

João Marcos do Ó*, Manassés de Souza

Department of Mathematics, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil
Received 10 January 2014; revised 21 January 2015

Available online 12 February 2015

Abstract

We prove a sharp form of the Trudinger–Moser inequality for the Sobolev space $H^{1,n}(\mathbb{R}^n)$. The sharpness comes from the introduction of an extra factor $\|u\|_n^n$ in the classical Trudinger–Moser inequality. Let

$$\ell(\alpha) := \sup_{\{u \in H^{1,n}(\mathbb{R}^n): \|u\|_{1,n}=1\}_{\mathbb{R}^n}} \int_{\mathbb{R}^n} \Phi \circ \nu_{\alpha}(u) \, \mathrm{d}x,$$

where $\Phi(t) := e^t - \sum_{i=0}^{n-1} \frac{t^i}{i!}$ and $v_{\alpha}(u) := \beta_n (1 + \alpha \|u\|_n^n)^{1/(n-1)} |u|^{n/(n-1)}$. The main results read: (1) for $0 \le \alpha < 1$ we have $\ell(\alpha) < \infty$, (2) for $\alpha > 1$, $\ell(\alpha) = \infty$ and (3) moreover, we prove that for $0 \le \alpha < 1$, an extremal function for $\ell(\alpha)$ exists.

© 2015 Elsevier Inc. All rights reserved.

MSC: 35J60: 35J92: 46E35: 46E30

Keywords: Limiting Sobolev inequalities; Trudinger–Moser inequality; Sharp constants; Extremal function; Blow-up analysis

^{*} Research partially supported by the National Institute of Science and Technology of Mathematics INCT-Mat, CAPES and CNPq.

^{*} Corresponding author. Fax: +55 83 3216 7487. E-mail address: jmbo@pq.cnpq.br (J.M. do Ó).

1. Introduction

This paper is concerned with the problem of finding optimal Trudinger–Moser type inequality for the Sobolev space $H^{1,n}(\mathbb{R}^n)$ and the existence of extremal functions. Sharp Trudinger–Moser inequality plays an important role in geometric analysis and partial differential equations and continues to be a source of inspiration to many researches in recent years. In order to motivate our work, let us present a brief history of the main results on this class of problems. Let $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ be a smooth bounded domain. The classical Sobolev theorem states that the imbedding $H_0^{1,n}(\Omega) \hookrightarrow L^q(\Omega)$ is continuous for all $q: 1 \le q < \infty$, but $H_0^{1,n}(\Omega) \not\hookrightarrow L^\infty(\Omega)$ as one can see by taking $u(r) = \ln(\ln(4R/r))$ for some R > 0 small enough such that $\overline{B_{2R}(0)} \subset \Omega$, where (without loss of generality) we assume $0 \in \Omega$ (cf. [3]). In this limiting case the optimal imbedding is an Orlicz space imbedding, which was proved by V.I. Yudovich [37], S.I. Pohozhaev [28], J. Peetre [27], N.S. Trudinger [35] and J. Moser [25]. More precisely, when Ω is a bounded domain, using the Dirichlet norm $\|\nabla u\|_n$ (equivalent to the Sobolev norm in $H_0^{1,n}(\Omega)$) they proved that

$$\sup_{\{u \in H_0^{1,n}(\Omega): \|\nabla u\|_n = 1\}} \int_{\Omega} e^{\beta |u|^{n/(n-1)}} dx \le C_n |\Omega|, \tag{1.1}$$

for any $\beta \leq \beta_n := n\omega_{n-1}^{1/(n-1)}$, where $|\Omega|$ denotes the Lebesgue measure of a set Ω in \mathbb{R}^n and ω_{n-1} is the measure of the unit sphere in \mathbb{R}^n . Moreover, β_n is the best constant in the following sense: the integral on the left actually is finite for any positive β , but if $\beta > \beta_n$ it can be made arbitrarily large by an appropriate choice of u and the supremum is $+\infty$.

However, P.-L. Lions [23] proved that an inequality like (1.1) holds along certain sequences with a constant larger than β_n ; more precisely, if $(u_k) \subset H_0^{1,n}(\Omega)$, $\|\nabla u_k\|_n = 1$ and $u_k \rightharpoonup u \not\equiv 0$ in $H_0^{1,n}(\Omega)$. Then

$$\sup_{k} \int_{\Omega} e^{p|u_{k}|^{n/(n-1)}} dx < \infty \tag{1.2}$$

provided that

$$p < \frac{\beta_n}{(1 - \|\nabla u\|_n^n)^{1/(n-1)}}.$$

To complete this analysis, the following results were proposed by Adimurthi and O. Druet [4] for the case n = 2 and by Y. Yang [36] for the case $n \ge 3$:

$$\sup_{\{u\in H_0^{1,n}(\Omega): \|\nabla u\|_n=1\}} \int_{\Omega} e^{\beta_n(1+\alpha\|u\|_n^n)^{1/(n-1)}|u|^{n/(n-1)}} \, \mathrm{d}x \begin{cases} <\infty & \text{if } 0 \leq \alpha < \lambda_1(\Omega) \\ =\infty & \text{if } \alpha \geq \lambda_1(\Omega) \end{cases}$$

where $\lambda_1(\Omega) = \inf\{\|\nabla u\|_n^n : u \in H_0^{1,n}(\Omega) \text{ and } \|u\|_n = 1\}.$

The Trudinger–Moser inequalities for unbounded domains were proposed by D.M. Cao [7] for the case n = 2 and J.M. do Ó [14] and R. Panda [26] for general case $n \ge 2$. Precisely, if

Download English Version:

https://daneshyari.com/en/article/4609979

Download Persian Version:

https://daneshyari.com/article/4609979

<u>Daneshyari.com</u>