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Abstract

This paper is a continuation of our partial work in [21], where we established that the bounded lo-
cal solution u(t, x) exists and is piecewise smooth for the second order degenerate hyperbolic equation
(∂2

t − tm�x)u = f (t, x,u) with the initial data of C1-piecewise smooth u(0, x) and piecewise smooth
∂tu(0, x). In the present paper, we will consider the lower regularity solution of the higher order degenerate
hyperbolic equation in the category of discontinuous and even unbounded functions.
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1. Introduction

In this paper, we will study the local existence and singularity structures of low regularity
solutions to the following higher order degenerate hyperbolic equations

{
∂t

(
∂2
t − tm�x

)
u = f (t, x,u), (t, x) ∈ [0,+∞) ×R

n,

∂
j
t u(0, x) = ϕj (x), 0 � j � 2

(1.1)

and

{(
∂2
t − tm1�x

)(
∂2
t − tm2�x

)
u = f (t, x,u), (t, x) ∈ [0,+∞) ×R

n,

∂k
t u(0, x) = ψk(x), 0 � k � 3,

(1.2)

where m,m1,m2 ∈ N, m1 �= m2, x ∈ R
n, f is C∞ smooth on its arguments and has a compact

support on the variable x = (x1, . . . , xn), and the discontinuous initial data ϕj (x) (0 � j � 2)

and ψk(x) (0 � k � 3) satisfy one of the assumptions:

(A1) ϕj (x) =
{

ϕj1(x) for x1 > 0,

ϕj2(x) for x1 < 0,
ψk(x) =

{
ψk1(x) for x1 > 0,

ψk2(x) for x1 < 0,

here ϕj1, ϕj2,ψk1,ψk2 ∈ C∞
0 (Rn) with ϕj1(0) �= ϕj2(0) and ψk1(0) �= ψk2(0).

(A2) ϕj (x) = gj (x, x
|x| ), ψk(x) = hk(x, x

|x| ), here gj (x, y) and hk(x, y) ∈ C∞(Rn × R
n) have

compact supports in B(0,1) × B(0,2).

Under the assumptions (A1) and (A2), we could get the following main results.

Theorem 1.1. Under the condition (A1), there exists a constant T > 0 such that
(i) (1.1) has a unique solution u ∈ L∞([0, T ] × R

n) ∩ C([0, T ],H 1
2 −(Rn)) ∩ C((0, T ],

H
m+1
m+2 −(Rn)) ∩ C1([0, T ],H− 1

m+2 −(Rn)) and u ∈ C∞((0, T ] × R
n \ Γ ±

m ∪ Γ0), where Γ ±
m =

{(t, x): t � 0, x1 = ± 2t (m+2)/2

m+2 }, and Γ0 = {(t, x): t � 0, x1 = 0}. In addition, here and below
Hs− = ⋂

ε>0 Hs−ε .

(ii) (1.2) has a unique solution u ∈ L∞([0, T ] × R
n) ∩ C([0, T ],H 1

2 −(Rn)) ∩ C((0, T ],
H

m2+1
m2+2 −

(Rn))∩C1([0, T ],H− 1
m2+2 −

(Rn)) and u ∈ C∞((0, T ]×R
n \Γ ±

m1
∪Γ ±

m2
), where Γ ±

mi
=

{(t, x): t � 0, x1 = ± 2t (mi+2)/2

mi+2 } for i = 1,2.

Theorem 1.2. Under the condition (A2), and further suppose that f satisfies |∂α
t,x∂

l
uf (t, x,u)| �

CT0,α,l(1 + |u|)max{K−l,0} for |α|, l ∈ N ∪ {0} and 0 � t � T0, here T0 > 0 and K > 0 are some
fixed constants, then there exists a constant T > 0 (T � T0) such that

(i) (1.1) has a unique solution u ∈ L∞
loc((0, T ] × R

n) ∩ C([0, T ],H n
2 −(Rn)) ∩ C((0, T ],

H
n
2 + m

2(m+2)
−
(Rn)) ∩C1([0, T ],H n

2 − m+4
2(m+2)

−
(Rn)), and u ∈ C∞((0, T ] × R

n \ Γm ∪ l0), where

Γm = {(t, x): t � 0, |x|2 = 4tm+2

(m+2)2 }, and l0 = {(t, x): t � 0, |x| = 0}.
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