

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 256 (2014) 407-460

www.elsevier.com/locate/jde

The existence and singularity structures of low regularity solutions to higher order degenerate hyperbolic equations

Ruan Zhuoping^{a,1}, Witt Ingo^{b,2}, Yin Huicheng^{a,*,1}

^a Department of Mathematics and IMS, Nanjing University, Nanjing 210093, China ^b Mathematical Institute, University of Göttingen, Bunsenstr. 3-5, D-37073 Göttingen, Germany

Received 4 May 2013

Available online 9 October 2013

Abstract

This paper is a continuation of our partial work in [21], where we established that the bounded local solution u(t, x) exists and is piecewise smooth for the second order degenerate hyperbolic equation $(\partial_t^2 - t^m \Delta_x)u = f(t, x, u)$ with the initial data of C^1 -piecewise smooth u(0, x) and piecewise smooth $\partial_t u(0, x)$. In the present paper, we will consider the lower regularity solution of the higher order degenerate hyperbolic equation in the category of discontinuous and even unbounded functions. © 2013 Elsevier Inc. All rights reserved.

MSC: 35L70; 35L65; 35L67; 76N15

Keywords: Higher order degenerate hyperbolic equation; Hilbert transform; Piecewise smooth; Confluent hypergeometric function; Cusp singularity; Conormal space

0022-0396/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jde.2013.09.007

^{*} Corresponding author.

E-mail addresses: zhuopingruan@nju.edu.cn (Z. Ruan), iwitt@uni-math.gwdg.de (I. Witt), huicheng@nju.edu.cn (H. Yin).

¹ Ruan Zhuoping and Yin Huicheng are supported by the NSFC (No. 1093-1007, No. 11025105), by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and by the DFG via the Sino-German project "Analysis of PDEs and application".

² Ingo Witt was partly supported by the DFG via the Sino-German project "Analysis of PDEs and application.

1. Introduction

In this paper, we will study the local existence and singularity structures of low regularity solutions to the following higher order degenerate hyperbolic equations

$$\begin{cases} \partial_t (\partial_t^2 - t^m \Delta_x) u = f(t, x, u), & (t, x) \in [0, +\infty) \times \mathbb{R}^n, \\ \partial_t^j u(0, x) = \varphi_j(x), & 0 \leqslant j \leqslant 2 \end{cases}$$
(1.1)

and

$$\begin{cases} \left(\partial_t^2 - t^{m_1} \Delta_x\right) \left(\partial_t^2 - t^{m_2} \Delta_x\right) u = f(t, x, u), & (t, x) \in [0, +\infty) \times \mathbb{R}^n, \\ \partial_t^k u(0, x) = \psi_k(x), & 0 \leqslant k \leqslant 3, \end{cases}$$
(1.2)

where $m, m_1, m_2 \in \mathbb{N}, m_1 \neq m_2, x \in \mathbb{R}^n$, f is C^{∞} smooth on its arguments and has a compact support on the variable $x = (x_1, \dots, x_n)$, and the discontinuous initial data $\varphi_j(x)$ $(0 \leq j \leq 2)$ and $\psi_k(x)$ $(0 \leq k \leq 3)$ satisfy one of the assumptions:

(A₁)
$$\varphi_j(x) = \begin{cases} \varphi_{j1}(x) & \text{for } x_1 > 0, \\ \varphi_{j2}(x) & \text{for } x_1 < 0, \end{cases} \quad \psi_k(x) = \begin{cases} \psi_{k1}(x) & \text{for } x_1 > 0, \\ \psi_{k2}(x) & \text{for } x_1 < 0, \end{cases}$$

here $\varphi_{j1}, \varphi_{j2}, \psi_{k1}, \psi_{k2} \in C_0^{\infty}(\mathbb{R}^n)$ with $\varphi_{j1}(0) \neq \varphi_{j2}(0)$ and $\psi_{k1}(0) \neq \psi_{k2}(0)$. (A₂) $\varphi_j(x) = g_j(x, \frac{x}{|x|}), \psi_k(x) = h_k(x, \frac{x}{|x|})$, here $g_j(x, y)$ and $h_k(x, y) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ have compact supports in $B(0, 1) \times B(0, 2)$.

Under the assumptions (A_1) and (A_2) , we could get the following main results.

Theorem 1.1. Under the condition (A_1) , there exists a constant T > 0 such that

(i) (1.1) has a unique solution $u \in L^{\infty}([0,T] \times \mathbb{R}^n) \cap C([0,T], H^{\frac{1}{2}-}(\mathbb{R}^n)) \cap C((0,T], H^{\frac{m+1}{2}-}(\mathbb{R}^n)) \cap C^1([0,T], H^{-\frac{1}{m+2}-}(\mathbb{R}^n))$ and $u \in C^{\infty}((0,T] \times \mathbb{R}^n \setminus \Gamma_m^{\pm} \cup \Gamma_0)$, where $\Gamma_m^{\pm} = \{(t,x): t \ge 0, x_1 = \pm \frac{2t^{(m+2)/2}}{m+2}\}$, and $\Gamma_0 = \{(t,x): t \ge 0, x_1 = 0\}$. In addition, here and below $H^{s-} = \bigcap_{\varepsilon > 0} H^{s-\varepsilon}$.

(ii) (1.2) has a unique solution $u \in L^{\infty}([0,T] \times \mathbb{R}^n) \cap C([0,T], H^{\frac{1}{2}-}(\mathbb{R}^n)) \cap C((0,T], H^{\frac{m_2+1}{m_2+2}-}(\mathbb{R}^n)) \cap C^1([0,T], H^{-\frac{1}{m_2+2}-}(\mathbb{R}^n))$ and $u \in C^{\infty}((0,T] \times \mathbb{R}^n \setminus \Gamma_{m_1}^{\pm} \cup \Gamma_{m_2}^{\pm})$, where $\Gamma_{m_i}^{\pm} = \{(t,x): t \ge 0, x_1 = \pm \frac{2t^{(m_i+2)/2}}{m_i+2}\}$ for i = 1, 2.

Theorem 1.2. Under the condition (A₂), and further suppose that f satisfies $|\partial_{t,x}^{\alpha}\partial_{u}^{l}f(t,x,u)| \leq C_{T_{0},\alpha,l}(1+|u|)^{\max\{K-l,0\}}$ for $|\alpha|, l \in \mathbb{N} \cup \{0\}$ and $0 \leq t \leq T_{0}$, here $T_{0} > 0$ and K > 0 are some fixed constants, then there exists a constant T > 0 ($T \leq T_{0}$) such that (i) (1.1) has a unique solution $u \in L_{loc}^{\infty}((0,T] \times \mathbb{R}^{n}) \cap C([0,T], H^{\frac{n}{2}-}(\mathbb{R}^{n})) \cap C((0,T],$

(i) (1.1) has a unique solution $u \in L^{\infty}_{loc}((0,T] \times \mathbb{R}^n) \cap C([0,T], H^{\frac{n}{2}-}(\mathbb{R}^n)) \cap C((0,T], H^{\frac{n}{2}+\frac{m}{2(m+2)}-}(\mathbb{R}^n)) \cap C^1([0,T], H^{\frac{n}{2}-\frac{m+4}{2(m+2)}-}(\mathbb{R}^n)), and u \in C^{\infty}((0,T] \times \mathbb{R}^n \setminus \Gamma_m \cup l_0), where \Gamma_m = \{(t,x): t \ge 0, |x|^2 = \frac{4t^{m+2}}{(m+2)^2}\}, and l_0 = \{(t,x): t \ge 0, |x| = 0\}.$

Download English Version:

https://daneshyari.com/en/article/4609984

Download Persian Version:

https://daneshyari.com/article/4609984

Daneshyari.com