
The Journal of Systems and Software 121 (2016) 16–27

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Adding data analytics capabilities to scaled-out object store

Cengiz Karakoyunlu

a , ∗, John A. Chandy

a , Alma Riska

b

a Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, United States
b NetApp, Inc., United States

a r t i c l e i n f o

Article history:

Received 21 November 2015

Revised 10 May 2016

Accepted 21 July 2016

Available online 30 July 2016

Keywords:

In-situ data analytics

Object storage

Attribute-based storage

MapReduce

a b s t r a c t

This work focuses on enabling effective data analytics on scaled-out object storage systems. Typically,

applications perform MapReduce computations by first copying large amounts of data to a separate com-

pute cluster (i.e. a Hadoop cluster). However; this approach is not very efficient considering that stor-

age systems can host hundreds of petabytes of data. Network bandwidth can be easily saturated and

the overall energy consumption would increase during large-scale data transfer. Instead of moving data

between remote clusters; we propose the implementation of a data analytics layer on an object-based

storage cluster to perform in-place MapReduce computation on existing data. The analytics layer is tied

to the underlying object store, utilizing its data redundancy and distribution policies across the cluster.

We implemented this approach with Ceph object storage system and Hadoop, and conducted evaluations

with various benchmarks. Performance evaluations show that initial data copy performance is improved

by up to 96% and the MapReduce performance is improved by up to 20% compared to the stock Hadoop

implementation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

High-performance computing on large-scale data has become

an important use case in recent years. There are various storage

system solutions for end users to perform high-performance com-

putation on large-scale data, while also providing data protection

and concurrency between different users Amazon elastic compute

cloud .

Clusters and cloud storage applications that work on large-scale

data typically employ separate compute and storage clusters, since

the requirements of the compute and storage tiers are different

from each other. However, a serious drawback of this architecture

is the need to move large amounts of data from the storage nodes

to the compute nodes in order to perform computation and then

to move the results back to the storage cluster. Today, many stor-

age systems store petabytes of data for various applications, such

as climate modeling, astronomy, genomics analysis etc., and the

amount of data stored in these systems is projected to reach ex-

abyte scale in the near future (Gantz and Reinsel, 2012). Therefore,

moving big amounts of data between storage and compute nodes

is not an efficient way of performing computation on large-scale

data anymore. Additionally, storing data both at the storage and

compute sites increases storage overhead and with data replicated

∗ Corresponding author.

E-mail addresses: cengiz.k@uconn.edu (C. Karakoyunlu), john.chandy@uconn.edu

(J.A. Chandy).

multiple times at both sites for resiliency, this overhead becomes

even worse. Moving data between storage and compute nodes also

increases the total energy consumption and the network load.

On the other hand, there have been many effort s that have gone

into improving storage interfaces and abstractions in order to store

and access data more efficiently. Object-based storage (Gibson

et al., 1998; Mesnier et al., 2003) is an important effort in this

respect and many scaled-out storage systems today Lustre (Lustre;

Maltzahn et al., 2010; Swift, 2015) are based on the object-based

storage abstraction. Object-based storage is an alternative to the

traditional block-based storage (i.e. SCSI, ATA). Data is stored in

discrete containers, called objects , each of which is identified by

a distinct numerical identifier. Each object stores data and data

attributes that can be controlled by the user. Data attributes can

be used to store metadata describing the data (i.e. size, name,

replica locations etc.) and metadata management operations to

query these attributes can be offloaded from dedicated servers

to object storage for improved performance (Ali et al., 2008). As

a result, object-based storage increases the interaction between

the storage system and the end-user and simplifies the data

management of a storage system.

Using object-based storage features, the computational applica-

tions in a cluster or cloud application can benefit from the intelli-

gence of the underlying storage system and eliminate data move-

ment while enabling in-place analytics capabilities. Consequently,

the storage layer can be scaled while the computational layer

remains lightweight. In this paper, we propose an example of

http://dx.doi.org/10.1016/j.jss.2016.07.029

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.07.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.07.029&domain=pdf
mailto:cengiz.k@uconn.edu
mailto:john.chandy@uconn.edu
http://dx.doi.org/10.1016/j.jss.2016.07.029

C. Karakoyunlu et al. / The Journal of Systems and Software 121 (2016) 16–27 17

this approach by implementing a computational framework,

Hadoop (Shvachko et al., 2010), on Ceph object-based storage sys-

tem (Weil et al., 2006). We also conduct performance evaluations

using Grep (Hadoop Grep, 2009), Wordcount (Hadoop Word-

Count, 2011), TestDFSIO HAD and TeraSort (Hadoop TeraSort, 2011)

benchmarks with various redundancy and replication policies. The

evaluation results indicate that initial data copy performance of

Hadoop is improved by up to 96% and MapReduce performance is

improved by up to 20%. It is important to note that, Hadoop and

Ceph object storage system can still be used as stand-alone sys-

tems in this approach, meaning that their normal functionalities

are not impacted.

The rest of this paper is organized as follows. Section 2 briefly

introduces MapReduce and object-based storage, two main com-

ponents of this work. Then, Section 3 discusses related studies in a

number of categories: improving the performance of Hadoop as a

stand-alone system, using a cluster file system as the backend stor-

age of Hadoop and integrating the computation layer of Hadoop,

MapReduce, with object storage systems for in-place computa-

tion. While presenting studies for the last category, their disad-

vantages against the method presented in this paper are discussed;

namely, data is still transferred to HDFS, data management policies

of the underlying storage system are overridden or data-compute

locality is only provided through virtualization. Section 4 shows

how to enable in-place analytics capabilities on large-scale data

using Hadoop and Ceph object storage without transferring

data from compute nodes to storage nodes and without chang-

ing how the underlying storage is managed. Section 5 gives

the performance evaluation results of the proposed method

from Grep (Hadoop Grep, 2009), Wordcount (Hadoop Word-

Count, 2011), TestDFSIO HAD and TeraSort (Hadoop TeraSort, 2011)

benchmarks. Finally, Section 6 summarizes the findings of this

work and discusses possible future research directions.

2. Background

This section gives a brief overview of the main components of

the approach proposed in this work - MapReduce and object-based

storage.

2.1. MapReduce

MapReduce is a parallel computational model developed origi-

nally by Google (Dean and Ghemawat, 2008) and it is widely used

for distributed processing of large datasets over clusters. Data in

MapReduce is represented with < key, value > pairs. The first step

of an application using MapReduce is to partition its input data

into blocks that are replicated across datanodes. This data is then

processed in parallel with mappers that produce intermediate data

from the input data. This intermediate data is then fed to reducers

which process the intermediate data based on intermediate keys

and combine intermediate values to form the final output data of

the application.

Hadoop (Shvachko et al., 2010) is a commonly used open-

source implementation of MapReduce and it consists of two layers

- storage and computation. The MapReduce algorithm is imple-

mented in the computational layer, whereas the storage layer is

managed by the Hadoop Distributed File System (HDFS). HDFS

provides redundancy by replicating data three times (by default)

across the storage nodes while also trying to preserve the data

locality of the system. One replica is stored locally, the second

replica is located in another node in the same rack and the last

replica is stored in another rack. Hadoop applications also follow a

write-once-read-many workflow and as a result, they can benefit

from the approach presented in this paper extensively, as data is

not ingested from a remote storage cluster to the compute cluster.

2.2. Object-based storage

Object-based storage is a storage model that stores and ac-

cesses data in flexible-sized logical containers, called objects ,

instead of using the traditional fixed-sized, block-based containers.

Objects store metadata either together with data or in dedicated

object attributes. Metadata can be any type of data (i.e. size, access

permissions, creation time etc.) describing the actual object data.

Increasing interest in object-based storage led to the standard-

ization of the T10 object-based storage interface OSD . There have

been many examples of object-based storage systems in cluster file

systems; such as PVFS (Carns et al., 20 0 0) and Lustre as well as

scaled out cloud storage systems; such as Ceph (Weil et al., 2006),

OpenStack Swift (Swift, 2015), and Amazon S3 Amazon Simple

Storage Service . These systems are typically designed as a software

interface on top of an existing file system.

3. Related work

This section introduces related studies on improving the

performance of Hadoop and its integration with object storage.

There have been several research efforts that analyzed and

tried to improve the performance of Hadoop without integrat-

ing it with an underlying storage system. Shvachko et al. show

the metadata scalability problem in Hadoop, by pointing out

that a single namenode in HDFS is sufficient for read-intensive

Hadoop workloads, while it will be saturated for write-intensive

workloads (Shvachko, 2010). Some related studies improved the

performance of Hadoop by modifying its internal data man-

agement methods. Scarlett replicates data based on popularity,

rather then creating replicas uniformly and causing machines

containing popular data to become bottlenecks in MapReduce

applications (Ananthanarayanan et al., 2011). Porter analyzes

the effects of decoupling storage and computation in Hadoop

by using SuperDataNodes , servers that contain more disks than

traditional Hadoop nodes, for the cases where the ratio of the

computation to storage is not known in advance (Porter, 2010).

CoHadoop modifies Hadoop by co-locating and copartitioning

related data on the same set of nodes with the hints gathered

from the applications (Eltabakh et al., 2011). Maestro identifies

map task executions processing remote data as an important

bottleneck in MapReduce applications and tries to overcome this

problem with a scheduling algorithm for map tasks that improves

locality (Ibrahim et al., 2012).

Hadoop is also integrated with cluster file systems in a number

of studies, in order to analyze the outcomes of using cluster

file systems for MapReduce applications. Tantisiriroj et al. in-

tegrate PVFS (Carns et al., 20 0 0) with Hadoop and compare its

performance to HDFS (Tantisiriroj et al., 2011). Ananthanarayanan

et al. use metablocks , logical structures that support both large

and small block interfaces, with GPFS to show that cluster file

systems with metablocks can match the performance of Internet

file systems for MapReduce applications (Ananthanarayanan et al.,

2009). Lustre can also be used as the backend file system of

Hadoop LUS .

More recent work integrates object storage with MapReduce

for in-place data analytics. Rupprecht et al. integrates OpenStack

Swift with MapReduce (Rupprecht et al., 2014); however, this

work overrides the replication policy of OpenStack Swift and has

performance loss due to the time reducers spend while renaming

results. CAST (Cheng et al., 2015) performs cloud storage allocation

and data placement for data analytics workloads by leveraging

the heterogeneity in cloud storage resources and within jobs in an

analytics workload. SupMR (Sevilla et al., 2014) creates MapReduce

input splits from data chunks rather than entire data, meaning that

data is still copied to the HDFS. Nakshatra (Kathpal and Yasa, 2014)

Download English Version:

https://daneshyari.com/en/article/461009

Download Persian Version:

https://daneshyari.com/article/461009

Daneshyari.com

https://daneshyari.com/en/article/461009
https://daneshyari.com/article/461009
https://daneshyari.com

