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Bifurcation of critical periods of polynomial systems
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Abstract

We describe a general approach to studying bifurcations of critical periods based on a complexification 
of the system and algorithms of computational algebra. Using this approach we obtain upper bounds on the 
number of critical periods of several families of cubic systems. In some cases we overcome the problem of 
nonradicality of a relevant ideal by moving it to a subalgebra generated by invariants of a group of linear 
transformations.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a system of ordinary differential equations on R2 of the form

u̇ = −v + P(u, v), v̇ = u + Q(u,v), (1)
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where u and v are real variables and P and Q are polynomials without constant or linear terms. 
The singularity of system (1) at the origin is either a center or a focus. When it is a center we can 
consider the so-called period function T (r), which gives the least period of the periodic solution 
passing through the point with coordinates (u, v) = (r, 0) inside the period annulus. A center is 
isochronous if all nonconstant solutions in a neighborhood have the same period. For a center 
that is not isochronous any value r > 0 for which T ′(r) = 0 is called a critical period.

Properties of period functions have been extensively studied. For example monotonicity prop-
erties were investigated in [3,5,8–10,16,27,35] and finitude of critical periods in [6,26]. An ex-
tensive literature is devoted to isochronicity of centers in systems (1), see for example [3,19,21]
and the references they contain.

The problem of interest for us, the so-called problem of critical period bifurcations, was con-
sidered for the first time by Chicone and Jacobs [7]. The problem is to estimate the number of 
critical periods that can arise near the center under small perturbation of system (1) within some 
family that contains it. In [7] this problem was studied for quadratic systems and some Hamilto-
nian systems. Bifurcations of critical periods for a linear center perturbed by homogeneous cubic 
polynomials were investigated in [19,31]. The problem has also been studied for reversible cubic 
systems [38], the reduced Kukles system [32], Liénard systems [40], generalized Lotka–Volterra 
systems [36], third-order planar Hamiltonian systems [37], generalized Loud systems [34], and 
reversible rigidly isochronous centers [4,23,39].

In all previous work devoted to critical period bifurcations the authors parametrized each 
component of the center variety (the subset of parameter space corresponding to centers) and 
derived, often laboriously, an upper bound on the number of critical periods bifurcating from 
each component. In this paper we describe an approach that allows one to obtain an upper bound 
on the number of critical periods for all components of the center variety simultaneously. Our 
approach is based on complexifying the real family and applying methods of computational 
commutative algebra and is algorithmic, provided the center and linearizability problems have 
already been solved. It can be applied to any family of polynomial systems for which the center 
and linearizability problems have been solved and for which the computations are feasible on 
available computational facilities.

After two sections of preliminary and background material we present the method in Sec-
tion 4, formulated as Theorem 4.1, and illustrate it by obtaining in Theorem 4.4 an upper bound 
of two for the number of critical periods that can bifurcate from a center at the origin of the real 
family whose expression in complex form (see (7)) is

ẋ = i(x + ax2 + bx3 + cx2x̄ + dxx̄2), (2)

selected because the center and linearizability varieties are known for this family and because a 
certain ideal in the polynomial ring over C in the parameters of the family is radical. The method 
we describe works well when this ideal is radical. When it is not radical it is possible to obtain a 
bound for a restricted set of centers by working separately with prime and non-prime components 
in a primary decomposition of the ideal of interest. This extension of the method is described in 
Section 5, where it is formulated as Theorem 5.2. It is illustrated in Theorem 5.6, which states 
that for the full family in (1) with only homogeneous cubic nonlinearities, whose expression in 
complex form is

ẋ = i(x + ax3 + bx2x̄ + cxx̄2 + dx̄3), (3)
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