

Available online at www.sciencedirect.com

J. Differential Equations 259 (2015) 4356-4375

Journal of Differential Equations

www.elsevier.com/locate/jde

A note on the strong maximum principle

Michiel Bertsch^{a,b}, Flavia Smarrazzo^c, Alberto Tesei^{b,*}

^a Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
^b Istituto per le Applicazioni del Calcolo "M. Picone", CNR, Roma, Italy
^c Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy

Received 28 July 2014; revised 23 April 2015

Available online 30 June 2015

Abstract

We give a necessary and sufficient condition for the validity of the strong maximum principle in one space dimension.

© 2015 Elsevier Inc. All rights reserved.

MSC: 35B50; 35D30; 35J15

Keywords: Strong maximum principle; Singular elliptic equations; Weak solutions; Differential inequalities

1. Introduction

The maximum principle is an important feature of second-order elliptic equations. Although its weak form is sufficient for many purposes (*e.g.*, see [12,19]), the *strong maximum principle*, which excludes the assumption of a nontrivial interior maximum, is often important. Its classical form can be stated as follows. Let $\Omega \subseteq \mathbb{R}^N$ be a connected, open set with smooth boundary $\partial \Omega$. Consider a uniformly elliptic operator of the form

$$\mathcal{L}u \equiv -\sum_{i,j=1}^{N} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i \frac{\partial u}{\partial x_i} + cu$$

Corresponding author.

http://dx.doi.org/10.1016/j.jde.2015.05.022

0022-0396/© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: bertsch.michiel@gmail.com (M. Bertsch), flavia.smarrazzo@gmail.com (F. Smarrazzo), albertotesei@gmail.com (A. Tesei).

with coefficients $a_{ij} = a_{ji}$, b_i , $c \in C(\Omega) \cap L^{\infty}(\Omega)$ (i, j = 1, ..., N). Let $c \ge 0$ in Ω , and let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy the inequality $\mathcal{L}u \le 0$ in Ω . Then the strong maximum principle asserts that, if there exists $x_0 \in \Omega$ such that $u(x_0) = \sup_{\Omega} u =: M \ge 0$, then $u \equiv M$ in Ω . It follows that, if $\mathcal{L}u \ge 0$ in Ω and there exists $x_0 \in \Omega$ such that $u(x_0) = \inf_{\Omega} u =: m \le 0$, then $u \equiv m$ in Ω . In particular, by the strong maximum principle,

if
$$u \ge 0$$
 and $\mathcal{L}u \ge 0$ in Ω , then either $u > 0$ in Ω , or $u \equiv 0$ in Ω .

Much effort has been made to extend the above result in two main directions: (*i*) addressing *degenerate* elliptic operators, for which the assumptions of uniform ellipticity, and/or regularity and boundedness of the coefficients a_{ij} , b_i , c are not satisfied; (*ii*) relaxing the assumptions concerning the boundary $\partial \Omega$. In connection with (*i*), weak or distributional formulations of the differential inequality $\mathcal{L}u \leq 0$ have been used.

Let us recall some results concerning degenerate elliptic operators. Let $a_{ij} \in C^2(\overline{\Omega})$, $b_i \in C^1(\overline{\Omega})$, $D^{\alpha}a_{ij} \in L^{\infty}(\Omega)$ for $|\alpha| \leq 2$, $D^{\alpha}b_i \in L^{\infty}(\Omega)$ for $|\alpha| \leq 1$; let $u \in C^2(\overline{\Omega})$ satisfy $\mathcal{L}u \leq 0$ in Ω . For any $x_0 \in \Omega$ such that $u(x_0) = \sup_{\Omega} u > 0$, consider the *propagation set* $\mathcal{P}(x_0) := \{x \in \Omega | u(x) = u(x_0)\}$. As proven in [24], $\mathcal{P}(x_0)$ contains the closure (in the relative topology) of the set $\mathcal{P}'(x_0)$ consisting of points, which can be joined to x_0 by a finite number of *subunitary* and/or *drift trajectories* (see [6,9,16,21] for the proof in particular cases; see also [1]). Remarkably, the set $\mathcal{P}'(x_0)$ coincides with the *support of the Markov process* corresponding to the operator \mathcal{L} – namely, with the closure of the collection of all trajectories of a Markovian particle, starting at x_0 , with generator \mathcal{L} (see [23,24]). Therefore, only the *attainable* points of the boundary $\partial\Omega$ (see [10,11]) belong to $\mathcal{P}'(x_0)$.

A similar idea underlies the so-called *refined maximum principle* proven in [3], where the operator \mathcal{L} is uniformly elliptic, but no smoothness of the boundary $\partial \Omega$ is assumed. Consider the subset of $E \subseteq \partial \Omega$ consisting of *attracting* boundary points, where the minimal positive solution U_0 of the *first exit time equation*

$$-\sum_{i,j=1}^{N} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i \frac{\partial u}{\partial x_i} = 1 \quad \text{in } \Omega$$
(1.1)

can be prolonged to zero (see [13,14]). It was proven in [3] that, if u is bounded from below in Ω , $u \ge 0$ in E and $\mathcal{L}u \ge 0$ in Ω , then $u \ge 0$ in Ω (in particular, in the usual situation the weak maximum principle is recovered).

In the above literature boundedness of the coefficients a_{ij} , b_i , c is always assumed. Concerning unbounded coefficients, while referring the reader to [8,15,20] and the references therein, let us focus on the following result. It is known that the strong maximum principle holds for the operator $\mathcal{L}u = -\Delta u + cu$, if $c \ge 0$ is measurable and $\sqrt{c} \in L_{loc}^p(\Omega)$ for some p > N (see [22, Corollary 8.1]). More generally, the following holds (see [2], [7, Theorem 1], [17, Proposition 5.20]):

Theorem 1.1. Let $\Omega \subseteq \mathbb{R}^N$ be connected and open. Let $c \in L^1(\Omega)$, $c \ge 0$ a.e. in Ω , and let $u \in C(\Omega) \cap L^1(\Omega)$ be nonnegative in Ω . If $-\Delta u + cu \ge 0$ in $\mathcal{D}'(\Omega)$ and u = 0 in a set of positive Newtonian capacity, then $u \equiv 0$ in Ω .

It was asked in [7] whether the condition $c \in L^1(\Omega)$ can be relaxed, *e.g.* by assuming $\sqrt{c} \in L^1_{loc}(\Omega)$. It is proven below that this is not the case (see Remark 2.2). This follows from the main

Download English Version:

https://daneshyari.com/en/article/4610107

Download Persian Version:

https://daneshyari.com/article/4610107

Daneshyari.com