
Dynamic clock-frequencies for FPGAs

J.A. Bower a,*, W. Luk a, O. Mencer a, M.J. Flynn b, M. Morf b

a Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK
b Computer Systems Laboratory, Department of Electrical Engineering Stanford, CA 94305, USA

Available online 28 February 2006

Abstract

Most FPGA designs run at a fixed clock-frequency determined through static analysis in FPGA vendor supplied tools. Such a clock-
ing strategy cannot take advantage of the full run-time potential of an application running on a specific device and in a specific operating
environment. This paper describes methods for using dynamic clock-frequencies to overcome this limitation. We begin by describing a
methodology for designing systems which allow dynamic clock-frequencies in FPGAs. We then present a framework for exploring the
dynamic behaviour of suitable clock-frequencies for a number of FPGA applications in varied operational environments. Finally we
introduce our AutoTEA system, which automatically adds circuitry to arbitrary FPGA designs for dynamically adjusting clock-frequen-
cy to a safe limit given current operating conditions. Our results show that dynamically clocking designs can lead to a speed improvement
of 33–86% compared to using a fixed, statically estimated clock.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Timing analysis; Better than worst-case performance; Over-clocking; Power-saving; High-performance computation

1. Introduction

FPGAs enable the implementation of adaptive high-per-
formance applications. Such custom hardware designs
require a custom clock-frequency which balances perfor-
mance with reliable circuit operation.

In a traditional FPGA design flow, clock-frequency is
determined through static analysis of netlists for a device
performed by software. After place-and-route a timing ana-
lyser program locates the longest combinatorial path
between RAMs, I/Os and flip-flops [1]. This path, termed
the ‘critical-path’, is the main bottleneck of the system and
as such a design’s clock-frequency can be derived from this.

We identify two sources of wasted performance with a
statically determined clock-frequency. First, the manufac-
turing process for FPGAs is not perfectly uniform, and dif-
ferent physical devices have different characteristics.

Second, the actual propagation delay through any path
in a device changes during operation. Such changes are
caused either by varying environmental conditions or even
internal temperature changes due to different inputs vary-
ing power consumption.

Static timing tools deal with the above issues by employ-
ing worst-case models for estimating delays in hardware
designs – leading to conservative clock frequencies. Anoth-
er problem with using a fixed, statically determined clock-
frequency is that all possible operating environments must
be supported, however in some situations the environment
may exceed conservative error margins. For example, a
battery powered device running low on power and sudden-
ly placed into a hot environment may fail although suffi-
cient power would have been available to continue
processing at a lower rate.

Dynamic clock-frequency schemes are alternatives to
static estimates and have the potential to improve both
high-performance and low-power applications. High-per-
formance applications can run at the maximum physically
attainable speed, while low-power applications can in gen-
eral manage power-consumption by optimally balancing

0141-9331/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2006.02.006

* Corresponding author.
E-mail addresses: Jacob.bower@imperial.ac.uk (J.A. Bower), w.luk@

imperial.ac.uk (W. Luk), o.mencer@imperial.ac.uk (O. Mencer), flynn@
ee.stanford.edu (M.J. Flynn), morf@snow.stanford.edu (M. Morf).

www.elsevier.com/locate/micpro

Microprocessors and Microsystems 30 (2006) 388–397

mailto:jacob.bower@imperial.ac.uk
mailto:w.luk@imperial.ac.uk
mailto:w.luk@imperial.ac.uk
mailto:o.mencer@imperial.ac.uk
mailto:flynn@ee.stanford.edu
mailto:flynn@ee.stanford.edu
mailto:morf@snow.stanford.edu


clock-frequency, voltage supply, and demand for
computation.

This paper contributes towards realising practical
FPGA-based systems with dynamic clock-frequency. In
particular, we provide:

• A methodology for creating dynamic clock-frequency
systems which provide user confidence in correct
operation.

• LIMIT: A hardware framework and experiments for
exploring the behaviour of maximal safe dynamic
clock-frequencies in FPGA designs.

• AutoTEA: An automated implementation of a tech-
nique for dynamically adjusting clock-frequencies to
their optimal value for arbitrary FPGA designs.

• Experimental results from our LIMIT and AutoTEA
systems applied to a diverse set of FPGA applications
under varied environmental conditions.

The remainder of this paper is organised as follows. In
Section 2 we review related work. We present our method-
ology for designing systems which implement dynamic
clock frequencies in Section 3. In Section 4 we present
our LIMIT and AutoTEA systems for implementing and
evaluating dynamic clock-frequencies. Finally, in Sections
5 and 6 we present results of our experiments with Auto-
TEA and LIMIT, and our conclusions.

2. Previous work

Dynamic clock-frequency is already common in modern
microprocessors and high-end ASICs [2]. ‘‘Over-clocking’’
in such systems pushes clock-frequency beyond vendor
specifications [3]. While such a manual and brute-force
approach is not suitable for serious computing systems,
research in this area aims to develop solutions that reliably
and dynamically adapt clock-frequency to optimal limits.
In this paper, we limit ourselves to a discussion of dynamic
clock-frequency systems for FPGAs.

We categorise some examples of this work into error tol-
erating and error avoiding systems and compare them to
our own work in Table 1. From the table, three systems
use error detection and correction techniques to tolerate
errors in over clocked logic: TIMERTOL [4], Razor
[5,12] and DIVA [6]. In the TIMERTOL and Razor sys-
tems, errors are detected by sampling inputs to pipeline

register stages at two different times. The idea is that early
samples can be used to continue processing and later out-
puts, which are more stable, can be used to detect if the
early samples are erroneous. DIVA describes a micropro-
cessor with a combined system of simple checker logic
and a complex processing core. The simplicity of the
checker logic allows it to be aggressively optimised for
high-speed operation. In this system the complex process-
ing logic is over-clocked using the high-speed checker to
catch all errors. The common idea in all these schemes is
to allow logic to run over-clocked, and check for errors
to prevent committing erroneous outputs. Clock-frequency
changes dynamically to minimise error rates.

Two systems which avoid errors by continuously re-
evaluating and adapting clock-frequency to maintain cor-
rect functionality are: a self-timed PIC16C57 compatible
microprocessor [7] and the TEAtime system [8]. In the
PIC16C57 microprocessor, execution is paused while
worst-case inputs exercise the system critical-path and the
results are checked for errors. Clock-frequency is adapted
to eliminate errors in the critical-path. TEAtime applies a
similar idea, except that it allows continuous operation of
a microprocessor design by creating a duplicate critical-
path for checking. This duplicate (or false) critical-path is
a one-bit wide version of the longest flip-flop-to-flip-flop
path in the main design with additional delay. The idea is
that the false critical-path, with its extra delay, will fail
before the main design so clock-frequency can be adjusted
based on observing errors in the false critical-path.

Other related research areas include: implementing low
temperature designs, designing for ‘‘average case perfor-
mance’’, dynamic voltage scaling (DVS) and adapting
clock-frequency to computation. The idea of designing
for average case performance is to create hardware which
can achieve higher clock-frequencies when inputs are
‘‘average case’’, and scaling the clock during worst-case
inputs [9]. Designing for low temperature enables higher
clock frequencies. A novel method for lowering tempera-
tures in FPGAs is to use dynamic reconfiguration to pre-
vent single areas of a chip from getting too hot [10].
Schemes for adapting clock-frequency to specific computa-
tion have also been developed with clock period altered
each cycle depending on which units are currently active
[11]. Dynamic clock-frequencies are also applicable to sys-
tems implementing DVS [14] as they allow frequency to be
optimally tailored to match the dynamic voltage.

Table 1
Comparison of our AutoTEA system to related efforts

AutoTEA (ours) TIMERTOL [4] TEATime [8] DIVA [6] Razor [5] PIC16C57 [7]

Error avoidance/tolerance Avoidance Tolerance Avoidance Tolerance Tolerance Avoidance
Overhead scales with design size No Yes No Yes Yes No
Automated implementation Yes No No No No No
Potential for automation High Medium High Low Medium Low
Prototype technology FPGA FPGA FPGA ASIC ASIC [12] ASIC

J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397 389



Download English Version:

https://daneshyari.com/en/article/461019

Download Persian Version:

https://daneshyari.com/article/461019

Daneshyari.com

https://daneshyari.com/en/article/461019
https://daneshyari.com/article/461019
https://daneshyari.com

