

Available online at www.sciencedirect.com

J. Differential Equations 259 (2015) 3274-3297

Journal of Differential Equations

www.elsevier.com/locate/jde

Remark on the scattering operator for the cubic nonlinear Dirac equation in three space dimensions

Hironobu Sasaki¹

Department of Mathematics and Informatics, Chiba University, 263-8522, Japan

Received 9 December 2014

Available online 30 April 2015

Abstract

This paper is concerned with the scattering operator *S* for the three-dimensional Dirac equation with a cubic nonlinearity. It follows from known results that *S* is well-defined on a neighborhood of 0 in the Sobolev space $H^{\kappa}(\mathbb{R}^3; \mathbb{C}^4)$ for any $\kappa > 1$. In the present paper, we prove that for any $M \in \mathbb{N}$ and $s \ge \max{\kappa, M}$, there exists some neighborhood *U* of 0 in the weighted Sobolev space $H^{s,M}(\mathbb{R}^3; \mathbb{C}^4)$ such that $S(U) \subset H^{s,M}(\mathbb{R}^3; \mathbb{C}^4)$.

© 2015 Elsevier Inc. All rights reserved.

MSC: 35P25; 35Q55; 35G25

Keywords: Nonlinear Dirac equation; Scattering operator; Weighted Sobolev space

1. Introduction

In this paper, we study scattering problems for the nonlinear Dirac equation in three space dimensions

$$(\partial_t + \alpha \cdot \nabla + i\beta) \Phi = \mathcal{N}(\Phi). \tag{NLD}$$

http://dx.doi.org/10.1016/j.jde.2015.04.020

E-mail address: sasaki@math.s.chiba-u.ac.jp.

¹ Supported by Grant-in-Aid for Young Scientists (B) No. 25800074.

^{0022-0396/© 2015} Elsevier Inc. All rights reserved.

Here, $\Phi = \Phi(t, x)$ is a \mathbb{C}^4 -valued unknown function defined on $\mathbb{R} \times \mathbb{R}^3$, $\partial_t = (\partial/\partial t)I$, *I* is the 4×4 identity matrix, $i = \sqrt{-1}$, $\alpha \cdot \nabla = \alpha_1 \partial_1 + \alpha_2 \partial_2 + \alpha_3 \partial_3$, $\partial_j = (\partial/\partial x_j)I$ (j = 1, 2, 3), α_1, α_2 , α_3 and β are 4×4 Hermitian matrices satisfying that

$$\alpha_j \alpha_k + \alpha_k \alpha_j = 2\delta_{jk}I, \quad \alpha_j \beta + \beta \alpha_j = 0, \quad \beta^2 = I \ (1 \le j, k \le 3),$$

and \mathcal{N} is a mapping from \mathbb{C}^4 into itself. Throughout this paper we assume that \mathcal{N} is a homogeneous cubic polynomial in z and its conjugate z^{\dagger} ($z \in \mathbb{C}^4$). Namely, we assume the following condition:

(N) Some \mathbb{C}^4 -valued constants Λ_a $(a \in (\mathbb{N} \cup \{0\})^8$ with |a| = 3) satisfy that

$$\mathcal{N}(z) = \sum_{|a|=3} (z, z^{\dagger})^a \Lambda_a, \quad z \in \mathbb{C}^4.$$

The functions

$$\mathcal{N}_0(z) = \lambda(z|z)z$$

and

$$\mathcal{N}_1(z) = \lambda(\beta z | z) \beta z$$

are typical examples satisfying (N), where $\lambda \in \mathbb{C}$ and $(\cdot | \cdot)$ is the \mathbb{C}^4 -inner product.

Eq. (NLD) with $\mathcal{N} = \mathcal{N}_1$ is one of the most important models in relativistic quantum fields and the Cauchy problem associated with (NLD) was studied (see, e.g., [2,4,9,10] and references therein). In particular, Machihara, Nakanishi and Ozawa [10] proved that if $\mathcal{N} = \mathcal{N}_1$, $\kappa > 1$ and $\Phi_0 \in H^{\kappa}$ is sufficiently small, then there exist a unique time-global solution $\Phi \in Y$ to (NLD) with the initial condition $\Phi(0) = \Phi_0$ and a unique data $\Phi_+ \in H^{\kappa}$ such that

$$\lim_{t \to +\infty} \|\Phi(t) - D(t)\Phi_+; H^{\kappa}\| = 0.$$
(1.1)

Here, H^{κ} denotes the Sobolev space $\omega^{-\kappa}L^2(\mathbb{R}^3; \mathbb{C}^4)$, $\omega = \sqrt{1-\Delta}$, *Y* is a given subspace of $C(\mathbb{R}; H^{\kappa})$ and $D(t)\Phi_+$ denotes the solution to the free Dirac equation $(\partial_t + \alpha \cdot \nabla + i\beta)\Phi = 0$ with the initial condition $\Phi(0) = \Phi_+$ (for the precise definition of D(t), see (1.2) below). Therefore, the inverse wave operator $V_+ : \Phi_0 \mapsto \Phi_+$ is well-defined as a mapping from some neighborhood of 0 in H^{κ} . Similarly, we can immediately see that for any \mathcal{N} satisfying (N), the inverse wave operator, the wave operator $W_- : \Phi_- \mapsto \Phi(0)$ and the scattering operator $S = V_+ \circ W_-$ for (NLD) are well-defined (for the precise statement of the existence of W_- , V_+ and S, see Proposition 1.2 below).

Remark 1.1. In the case $\mathcal{N} = \mathcal{N}_1$, recently Bejenaru and Herr [1] proved that (NLD) is globally well-posed for small initial data in H^1 and small solutions scatter to free solutions as $t \to \infty$. In the proof, they used a null structure in a system of equations which is equivalent to (NLD) with $\mathcal{N} = \mathcal{N}_1$. It does not seem that for any \mathcal{N} satisfying (N) the method in [1] is applicable to (NLD).

Download English Version:

https://daneshyari.com/en/article/4610226

Download Persian Version:

https://daneshyari.com/article/4610226

Daneshyari.com