
The Journal of Systems and Software 106 (2015) 9–27

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Engineering Future Internet applications: The Prime approach

Mauro Caporuscio a,∗, Carlo Ghezzi b

a Department of Computer Science – Linnaeus University, Växjö SE-351 95, Sweden
b Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano, P.zza L. Da Vinci 32, Milano 20133, Italy

a r t i c l e i n f o

Article history:

Received 23 June 2014

Revised 30 March 2015

Accepted 31 March 2015

Available online 14 April 2015

Keywords:

Resource-oriented architecture

Middleware

Future Internet

a b s t r a c t

The Future Internet is envisioned as a worldwide environment connecting a large open-ended collection of

heterogeneous and autonomous resources, namely Things, Services and Contents, which interact with each

other anywhere and anytime. Applications will possibly emerge dynamically as opportunistic aggregation of

resources available at a given time, and will be able to self-adapt according to the environment dynamics. In

this context, engineers should be provided with proper modeling and programming abstractions to develop

applications able to benefit from Future Internet, by being at the same time fluid, as well as dependable.

Indeed, such abstractions should (i) facilitate the development of autonomous and independent interacting

resources (loose coupling), (ii) deal with the run-time variability of the application in terms of involved

resources (flexibility), (iii) provide mechanisms for run-time resources discovery and access (dynamism), and

(iv) enable the running application to accommodate unforeseen resources (serendipity).

To this end, Prime (P-Rest at design/run tIME) defines the P-REST architectural style, and a set of P-REST

oriented modeling and programming abstractions to provide engineers with both design-time and run-time

support for specifying, implementing and operating P-RESTful applications.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since the first packet-switching network was deployed, the evo-

lution of the Internet has been constant and produced a phenomenon

that radically changed communications. While initially simply used to

exchange data between hosts, today the Internet is essential for the

development and provision of software resources (e.g., data, appli-

cations, services) distributed all over the world. Furthermore, wire-

less network technology (e.g., 4G, Wi-Fi Direct, and Bluetooth LE)

allows autonomous mobile devices (e.g., sensors, smartphones, and

real world objects) to both consume and provide software resources

over the Internet. On the other hand, from the application-level per-

spective, the Internet evolution is characterized by a fast transition

from “sharing” (Web1.0) and “contributing” (Web2.0) toward “con-

textualizing” (Web3.0), which encompasses machine-facilitated un-

derstanding and correlation of software resources.

Several EU1 and USA2 research initiatives are currently focusing

on the definition and development of the Future Internet (FI). Accord-

ing to the vision of the EU research initiative (Papadimitriou, 2009), FI

∗ Corresponding author. Tel.: +46 470708558.

E-mail addresses: mauro.caporuscio@lnu.se (M. Caporuscio),

carlo.ghezzi@polimi.it (C. Ghezzi).
1 http://www.future-internet.eu.
2 http://www.nets-find.net.

is built upon three key pillars – Internet of Things, Internet of Services,

Internet of Contents – underpinned by a dynamic network infrastruc-

ture. FI is envisioned as a worldwide pervasive execution environment

dynamically formed by interconnected real-world objects, which are

all around us, everywhere and anytime, and can be discovered, cor-

related and consumed as needed. Indeed, FI can be considered as a

worldwide network-based system,3 where a large open-ended collec-

tion of heterogeneous and pervasive resources dynamically interact

with each other, to provide users with rich functionalities, e.g., content

sharing, service provisioning, and real thing consumption.

FI applications will dynamically emerge as opportunistic aggre-

gation (Preda et al., 2012) of resources of interest available at any

given time. To achieve this vision, key objectives are: (i) Abstraction

to facilitate the design, implementation, and integration of software

resources, irrespectively of their specific nature (i.e., thing, service,

and content) and location, and (ii) Contextualization to support oppor-

tunistic discovery and correlation of resources of interest.

Concerning abstraction, software engineering best practices sug-

gest the exploitation of middleware solutions, which mask the dis-

tribution and heterogeneity of both the execution and the network-

ing environments, and support the development of network-based

3 Network-based systems rely on explicit distribution of independent and au-

tonomous components, which interact by means of (asynchronous) message pass-

ing (Tanenbaum & Van Renesse, 1985).

http://dx.doi.org/10.1016/j.jss.2015.03.102

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.03.102
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.03.102&domain=pdf
mailto:mauro.caporuscio@lnu.se
mailto:carlo.ghezzi@polimi.it
http://www.future-internet.eu
http://www.nets-find.net
http://dx.doi.org/10.1016/j.jss.2015.03.102


10 M. Caporuscio, C. Ghezzi / The Journal of Systems and Software 106 (2015) 9–27

systems through the provision of proper mechanisms for designing

and implementing software resources, as well as for deploying, pub-

lishing, discovering and binding them at run time (Issarny et al., 2007).

Existing middleware solutions provide different types of abstraction –

e.g., procedure, object, component, service – to deal with these issues.

However, all the stability assumptions made on network-based sys-

tems are no longer valid in the continuously changing contexts that

characterize FI, where mobility affects the dynamic availability of re-

sources (Roman et al., 2000). As a result, FI applications can be viewed

as a dynamic software architecture where both the entities and their

interconnections can change at run time. In the FI setting, applications

are required to be “fluid”. By this we mean that they must be able to

accommodate continuous architectural changes, possibly without af-

fecting their behavior (Kortuem, 2006). Therefore, key requirement is

to provide developers with a set of proper abstractions enabling archi-

tectural fluidity: (i) loose coupling: entities are deployed and executed

independently of other entities, (ii) flexibility: entities can be added

and removed into the running application, (iii) dynamism: entities

of interests are discovered and bound into the running application,

and (iv) serendipity: unforeseen entities are accommodated into the

running application.

The literature defines context as “any information that can be used

to characterize the situation of entities, such as individuals, places,

or objects, that are deemed relevant to the interaction between a

user and an application, including the user and the application them-

selves” (Dey et al., 2001). The term “contextualization” indicates that

FI applications should be built by dynamically aggregating resources

related to a particular situation, and be able to adapt to the evolving

situation in which they operate, such as the physical environment

and the computational entities populating it or the device on which

the application runs. The challenges related to Contextualization con-

cern the ability of discovering, understanding, selecting, and correlat-

ing resources of interests. Contextualizing resources of interest in

an open-ended world asks for mechanisms to semantically describe

both functional and extra-functional properties of the resources, and

to reason about them and their actual context. To this end, semantic

description of software artifacts demonstrated to be effective and has

been being largely adopted in the context of Semantic Web (Berners-

Lee et al., 2001), which employs ontologies as main building blocks

to enable the semantic web vision.

Contribution of the work – In this work we study FI from a

software engineering perspective. Specifically, we develop a princi-

pled, middleware-supported architectural approach that is intended

to support fluid applications. Our main contribution is twofold. First,

we present a fully revised and extended version of the P-REST ar-

chitectural style (Caporuscio et al., 2011), and define a set of mod-

eling abstractions to provide engineers with design-time support for

specifying P-RESTful applications.4 Second, we define a set of pro-

gramming abstractions to provide engineers with run-time support

for implementing and operating P-RESTful applications. Indeed, the

Prime (P-Rest at design/run-tIME) approach provides both modeling

and programming abstractions for (i) uniformly representing things,

services and contents as resource, and (ii) developing FI applications

as opportunistic aggregations of contextualized resources.

To assess the applicability of our approach, we evaluate Prime’s

modeling and programming abstractions in supporting the devel-

opment of a set of FI applications, namely Smart City Pulse, Smart

Slide Show, and Smart eHealth. We also empirically evaluate the effec-

tiveness of Prime’s middleware in supporting resource management,

discovery, provision, and interaction.

The paper is structured as follows: Section 2 introduces a motivat-

ing scenario further used as running example throughout the paper,

and Section 3 discusses related work. Sections 5 and 6 discuss design

4 That is, applications that conform to the P-REST style.

Fig. 1. Smart City Pulse application – scenario.

rationale for resource abstraction and contextualization, respectively,

whereas Section 7 details their implementation. The assessment of

Prime is carried out in Section 8, which evaluates both efficacy and

efficiency of the approach. Finally, Section 9 concludes the paper and

sketches our perspectives for future work.

2. Motivating scenario

This section introduces Smart City Pulse, a Future Internet applica-

tion that serves as running example throughout the paper to illustrate

the proposed approach.

Smart City Pulse is a crowdsourcing application that aims at find-

ing, retrieving, and monitoring data produced by a networked sensing

infrastructure made of sensors embedded in end-user mobile devices

(e.g., GPS, temperature), public utilities (e.g., smart metering, surveil-

lance, traffic and pollution monitoring), and many other kinds of sens-

ing systems. Referring to Fig. 1, Smart City Pulse is composed of: (i) an

open-ended set of heterogeneous Sensors deployed within the city,

and (ii) a Monitoring Service that analyzes the data gathered from the

sensors.

Functional requirements for Smart City Pulse are specified as fol-

lows:

R0: Sensors are deployed on mobile devices, and may enter/leave

the network dynamically.

R1: Sensors are autonomous and the Monitoring Service has no a-

priori knowledge of them.

R2: The number of Sensors engaged in the application changes over

the time.

R3: The types of Sensors engaged in the application change over

the time.

R4: A Monitoring Service dynamically discovers and accesses new

sensors. For instance: (R4.0) all Sensors in the network, irrespectively

of their specific type; (R4.1) all Sensors of a given type (e.g., temper-

ature); (R4.2) all Sensors within a given area (e.g., downtown); and

(R4.3) all Sensors related to a given situation (e.g., weather report).

3. Related work

Related work spans several research areas, from pervasive

computing to software architecture and semantic web. This

section focuses on related work in the two areas where Prime mainly

contributes, namely engineering resource abstraction and engineering

resource contextualization.

3.1. Engineering resource abstraction

Software engineering best practices suggest to support the devel-

opment of network-based applications through the exploitation of

middleware, which provides engineers with abstractions for design-

ing and implementing networked software resources (Issarny et al.,

2007).



Download English Version:

https://daneshyari.com/en/article/461023

Download Persian Version:

https://daneshyari.com/article/461023

Daneshyari.com

https://daneshyari.com/en/article/461023
https://daneshyari.com/article/461023
https://daneshyari.com

