
The Journal of Systems and Software 106 (2015) 42–58

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Safe evolution templates for software product lines

L. Neves a, P. Borba a, V. Alves b, L. Turnes b, L. Teixeira a,∗, D. Sena c, U. Kulesza c

a Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n 50740–560 Recife, PE, Brazil
b Computer Science Department, University of Brasilia, Brazil
c Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal, Brazil

a r t i c l e i n f o

Article history:

Received 11 February 2014

Revised 3 March 2015

Accepted 3 April 2015

Available online 16 April 2015

Keywords:

Software product lines

Refinement

Evolution

a b s t r a c t

Software product lines enable generating related software products from reusable assets. Adopting a product

line strategy can bring significant quality and productivity improvements. However, evolving a product line

can be risky, since it might impact many products. When introducing new features or improving its design,

it is important to make sure that the behavior of existing products is not affected. To ensure that, one usually

has to analyze different types of artifacts, an activity that can lead to errors. To address this issue, in this work

we discover and analyze concrete evolution scenarios from five different product lines. We discover a total

of 13 safe evolution templates, which are generic transformations that developers can apply when evolving

compositional and annotative product lines, with the goal of preserving the behavior of existing products.

We also evaluate the templates by analyzing the evolution history of these product lines. In this evaluation,

we observe that the templates can address the modifications that developers performed in the analyzed

scenarios, which corroborates the expressiveness of our template set. We also observe that the templates

could also have helped to avoid the errors that we identified during our analysis.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A software product line is a set of related software products that

are systematically generated from reusable assets. Products are re-

lated in the sense that they share functionality or behavior. Assets

correspond to artifacts such as classes and property files, which we

compose or instantiate in different ways to specify or build products.

This kind of reuse targeted at a specific set of products can bring pro-

ductivity and time-to-market improvements (van der Linden et al.,

2007; Pohl et al., 2005). To obtain these benefits with reduced up-

front investment and risks, we can minimize the initial upfront cost

of software product line adoption by extracting a software product

line from existing products (Clements & Northrop, 2001; Krueger,

2002). Similar processes apply to evolving a software product line,

both when just improving the product line design and when adding

new functionality and products, which often requires extracting vari-

ations from parts previously shared by a set of products.

The activity of manually extracting different software product

line assets when evolving it requires substantial effort, especially for

checking necessary conditions to make sure the extraction is cor-

∗ Corresponding author.

E-mail addresses: lmn3@cin.ufpe.br (L. Neves), phmb@cin.ufpe.br (P. Borba),

valves@unb.br (V. Alves), lmt@cin.ufpe.br (L. Teixeira), demostenes.sena@ifrn.edu.br

(D. Sena), uira@dimap.ufrn.br (U. Kulesza).

rectly performed. In fact, the lack of specific guidelines and devel-

opment tools to support software product line evolution makes this

process error-prone. Extractions might lead to unintended modifi-

cations to the behavior of existing products, affecting product line

users and compromising the promised benefits in other dimensions

of costs and risks. The associated defects are more difficult to track

because they are only present in specific products. Generating and

testing these different products may help to discover and correct the

mentioned issues. However, as the number of products can be high,

testing all of them can be expensive and impact productivity.

To avoid these problems and evolve a software product line in a

safe way (in the general sense that behavior is preserved, not specif-

ically referring to conventional safety properties), we could resort to

a formal notion of software product line refinement or safe evolu-

tion (Borba, 2009; Borba et al., 2012). By basically requiring preser-

vation of the observable behavior of existing products, this notion

guarantees that changes to a software product line do not impact its

existing users. So users of the products that could be generated before

the changes can use the new modified products without noticing any

difference. This notion applies when we need to introduce new prod-

ucts to the software product line without changing existing ones, or

when we want to improve the product line design without modifying

the behavior of existing products. To support such change scenarios,

safe evolution considers that software product line specific artifacts,

like feature models (Czarnecki & Eisenecker, 2000; Kang et al., 1990)

and configuration knowledge (Czarnecki & Eisenecker, 2000), often

http://dx.doi.org/10.1016/j.jss.2015.04.024

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.04.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.04.024&domain=pdf
mailto:lmn3@cin.ufpe.br
mailto:phmb@cin.ufpe.br
mailto:valves@unb.br
mailto:lmt@cin.ufpe.br
mailto:demostenes.sena@ifrn.edu.br
mailto:uira@dimap.ufrn.br
http://dx.doi.org/10.1016/j.jss.2015.04.024

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 43

coevolve with assets (Neves et al., 2011; Passos et al., 2013; Seidl

et al., 2012) .

With the goal of better understanding the process involved in

software product line safe evolution, in this work we describe em-

pirical studies that lead to the discovery and analysis of 67 con-

crete safe evolution scenarios from five different software product

lines. Each scenario is characterized by a commit and one of its

subsequent commits in the evolution history of the product lines

repositories.

Based on the evolution history from two of the aforementioned

software product lines, we identify and precisely describe a num-

ber of safe evolution templates that abstract, generalize, and fac-

torize the analyzed scenarios, and also conform to the refinement

notion (Borba et al., 2012) we rely on. These templates are generic

transformations that developers can safely apply when maintaining

compositional and annotative software product lines. They specify

transformations that go beyond program refactoring notions (Fowler,

1999; Roberts, 1999), which deal with simple programs, by consid-

ering both sets of reusable assets that do not necessarily correspond

to valid programs, and extra software product line artifacts such as

feature models and configuration knowledge. For each template, we

describe its structure and the necessary conditions for proper applica-

tion. We also show examples of correct application of the templates

in evolution scenarios mined from existing software product lines.

This way we hope to provide extra, concise and explicit guidance to

evolve a software product line in a safe way. The templates can also

be used as a basis to automate support for safe software product line

evolution.

We evaluate the proposed templates by analyzing the evolution

history of the five aforementioned software product lines. In this eval-

uation, we could observe that the proposed templates can address the

modifications that developers performed in the analyzed scenarios,

which corroborate the expressiveness of our template set. As a sec-

ondary result, we observe that the templates could be used to avoid

some defects introduced during the evolution history of some product

lines. Such defects were caused by modifications that were supposed

to be safe, but actually changed the behavior of existing products.

In summary, with the aim of discovering more safe evolution tem-

plates and assessing whether they could be useful to justify exist-

ing evolution scenarios, this article extends our previous conference

paper (Neves et al., 2011) in two main ways:

• study of annotative software product lines: we go beyond our pre-

vious study on compositional software product lines by analyzing

and presenting five additional templates (Section 3.2.2) that deal

with an extended configuration knowledge notion—mapping fea-

ture expressions to transformations involving assets—necessary

to address evolution scenarios that involve preprocessor-

based variability management in annotative software product

lines (Kästner et al., 2008);
• further evaluation: we bring additional evidence of the expres-

siveness of the proposed templates, evaluating the evolution his-

tory of three additional software product lines, namely, a prod-

uct line of research group management systems, a product line

of product line derivation tools, and a product line of academic

information systems.

We organize the rest of the text as follows. Section 2 introduces the

main concepts used in this work, such as feature models, configu-

ration knowledge, asset mappings, and the product line refinement

notion. Section 3 presents the safe evolution templates for software

product lines. It also shows some examples of the templates being

applied in different software product lines. Section 4 presents the

results of a study performed to evaluate the expressiveness of our

template set. We discuss related work in Section 5 and conclude with

Section 6.

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo Photo

Fig. 1. MobileMedia FM example.

2. Software product line concepts

To enable the automatic generation of products from assets, soft-

ware product lines, hereafter product lines, often rely on artifacts such

as Feature Models (FM), Configuration Knowledge (CK) (Czarnecki

& Eisenecker, 2000), and assets, which we briefly describe in what

follows. To guide the product line evolution analysis and identify

the evolution scenarios, we rely on a product line refinement no-

tion (Borba et al., 2012), which formalizes our intuition about safe

evolution, drives the analysis of the evolution scenarios and justifies

the product line transformation templates we propose in this arti-

cle. Essentially, we say that a product line L′ refines a product line L

whenever L′ is able to generate products that behaviorally match L

products. This way, users of a product from L cannot observe behav-

ioral differences when using the corresponding product of L′. This is

exactly what guarantees safety when improving a product line design

by changing its FM, CK or assets.

2.1. Feature models

A FM is usually represented as a tree, containing features and

information about how they relate to each other. Features have dif-

ferent names and abstract groups of associated requirements, both

functional and non-functional. In this work, we use the notation by

Czarnecki and Eisenecker (2000) to express relationships between a

parent feature and its child features.

Besides these relationships, the notation we consider may also

contain propositional logic constraints over features. We use feature

names as atoms to indicate feature selection. So, negation indicates

that a feature should not be selected. For instance, the formula below

the tree in Fig. 1 states that feature Photo must be present in every

product that has feature SendPhoto. So {Photo, SendPhoto, 240×320},

together with the mandatory features, which hereafter we omit for

brevity, is a valid feature selection (product configuration), but {Music,

SendPhoto, 240×320} is not. A product configuration is a valid feature

selection that satisfies all FM constraints, specified both graphically

and through formulae. Each product configuration corresponds to a

product from the product line, expressed in terms of the features it

supports. This captures the intuition that the FM denotes the set of

products in a product line (Schobbens et al., 2007).

2.2. Assets

In a product line, we specify and implement features with reusable

assets. So, we must consider different languages for specifying and im-

plementing assets such as requirements documents, design models,

code, tests, data files, and so on. For simplicity, in the text we focus

on code assets for the examples and concepts, as they are equivalent

to the other kinds of assets with respect to our interests on product

line refinement. This way, we can focus on the essential concepts

these languages should support. The important issue here is not the

Download English Version:

https://daneshyari.com/en/article/461025

Download Persian Version:

https://daneshyari.com/article/461025

Daneshyari.com

https://daneshyari.com/en/article/461025
https://daneshyari.com/article/461025
https://daneshyari.com

