

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 257 (2014) 3226-3271

www.elsevier.com/locate/jde

Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity

Steinar Evje ^a, Qingqing Liu ^b, Changjiang Zhu ^{b,*}

^a University of Stavanger, NO-4068 Stavanger, Norway
^b The Hubei Key Laboratory of Mathematical Physics, School of Mathematics and Statistics,
Central China Normal University, Wuhan, 430079, PR China

Received 23 August 2013

Available online 27 June 2014

Abstract

In this paper we are concerned with the initial-boundary value problem of the compressible gas-liquid model with well-formation interaction and gravity. The asymptotic behavior of solutions to steady states is established. Also the time-decay rates of perturbed solutions in the sense of L^{∞} norm are obtained under some suitable assumptions on the initial date, if $\gamma > 1$ (associated with pressure law of gas) and $\beta \in (0, \frac{\gamma}{2}] \cap (0, \gamma - \alpha \gamma) \cap (0, \frac{\gamma + \alpha \gamma}{3}]$ where β characterizes the viscosity coefficient and α describes the mass decay rate at the boundary. A main purpose of this work is to clarify the role played by the well-reservoir interaction term. The analysis demonstrates that it is essential to take into account information about sign as well as size of the interaction term in order to obtain time-independent estimates when it operates in combination with gravity.

© 2014 Elsevier Inc. All rights reserved.

MSC: 76T10; 35L65; 35B40

Keywords: Two-phase flow; Stationary solutions; Convergence rates

E-mail addresses: steinar.evje@uis.no (S. Evje), shuxueliuqingqing@126.com (Q.Q. Liu), cjzhu@mail.ccnu.edu.cn (C.J. Zhu).

^{*} Corresponding author.

Contents

1.	Introduction	3227
2.	Formulation of problem and main results	3230
3.	Uniform a priori estimates	3234
4.	Asymptotic behavior	3253
5.	Stabilization rate estimates	3257
Ackno	owledgments	3270
Refer	ences	3270

1. Introduction

The compressible drift-flux gas-liquid model is often used in chemical engineering to describe the dynamics of two-phase flow, see [1,2]. This model is different from the two-fluid model in the sense that it has one mixture momentum equation instead of two separate momentum equations. We refer to [10] for more on the relationship between the two-fluid and drift-flux models. In this paper, we are concerned with a gas-liquid model where gas is allowed to flow between a wellbore and surrounding formation governed by a given function A(x, t). From an application point of view, A(x, t) > 0 means that there is inflow of gas along the well and A(x, t) < 0 means that there is outflow of gas along the well, see [4]. More precisely, the corresponding model can be written in Eulerian coordinates as

$$\begin{cases}
\partial_t n + \partial_x [nu] = nA(x, t), \\
\partial_t m + \partial_x [mu] = 0, \\
\partial_t [(m+n)u] + \partial_x [(m+n)u^2] + \partial_x P = gm + \partial_x [\varepsilon \partial_x u], \quad a(t) < x < b,
\end{cases}$$
(1.1)

where the free boundary function a(t) satisfies

$$\begin{cases} \frac{da(t)}{dt} = u(a(t), t), & t > 0, \\ a(0) = a. \end{cases}$$

Here, $n = n(x, t) \ge 0$, $m = m(x, t) \ge 0$ respectively are masses of the gas and liquid. u = u(x, t) denotes velocity of the phases. Initial data is given as

$$m(x, 0) = m_0(x),$$
 $n(x, 0) = n_0(x),$ $u(x, 0) = u_0(x),$ (1.2)

and the boundary conditions

$$n(a(t), t) = 0,$$
 $m(a(t), t) = 0,$ $u(b, t) = 0,$ $t > 0.$ (1.3)

The pressure function $P(\cdot, \cdot)$ and viscosity function $\varepsilon(\cdot, \cdot)$ depending on the masses satisfy

$$P(n,m) = K_1 \left(\frac{n}{\rho_l - m}\right)^{\gamma}, \qquad \varepsilon(n,m) = \frac{K_2 n^{\beta}}{(\rho_l - m)^{\beta + 1}}, \quad K_1, K_2 > 0.$$
 (1.4)

Download English Version:

https://daneshyari.com/en/article/4610251

Download Persian Version:

https://daneshyari.com/article/4610251

<u>Daneshyari.com</u>