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Abstract

In this paper we are concerned with the initial–boundary value problem of the compressible gas–liquid 
model with well-formation interaction and gravity. The asymptotic behavior of solutions to steady states 
is established. Also the time-decay rates of perturbed solutions in the sense of L∞ norm are obtained 
under some suitable assumptions on the initial date, if γ > 1 (associated with pressure law of gas) and 
β ∈ (0, γ2 ] ∩ (0, γ − αγ ) ∩ (0, γ+αγ

3 ] where β characterizes the viscosity coefficient and α describes 
the mass decay rate at the boundary. A main purpose of this work is to clarify the role played by the 
well-reservoir interaction term. The analysis demonstrates that it is essential to take into account information 
about sign as well as size of the interaction term in order to obtain time-independent estimates when it 
operates in combination with gravity.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The compressible drift-flux gas–liquid model is often used in chemical engineering to describe 
the dynamics of two-phase flow, see [1,2]. This model is different from the two-fluid model in the 
sense that it has one mixture momentum equation instead of two separate momentum equations. 
We refer to [10] for more on the relationship between the two-fluid and drift-flux models. In 
this paper, we are concerned with a gas–liquid model where gas is allowed to flow between a 
wellbore and surrounding formation governed by a given function A(x, t). From an application 
point of view, A(x, t) > 0 means that there is inflow of gas along the well and A(x, t) < 0 means 
that there is outflow of gas along the well, see [4]. More precisely, the corresponding model can 
be written in Eulerian coordinates as⎧⎪⎨

⎪⎩
∂tn + ∂x[nu] = nA(x, t),

∂tm + ∂x[mu] = 0,

∂t

[
(m + n)u

] + ∂x

[
(m + n)u2] + ∂xP = gm + ∂x[ε∂xu], a(t) < x < b,

(1.1)

where the free boundary function a(t) satisfies

⎧⎨
⎩

da(t)

dt
= u

(
a(t), t

)
, t > 0,

a(0) = a.

Here, n = n(x, t) ≥ 0, m = m(x, t) ≥ 0 respectively are masses of the gas and liquid. u = u(x, t)
denotes velocity of the phases. Initial data is given as

m(x,0) = m0(x), n(x,0) = n0(x), u(x,0) = u0(x), (1.2)

and the boundary conditions

n
(
a(t), t

) = 0, m
(
a(t), t

) = 0, u(b, t) = 0, t > 0. (1.3)

The pressure function P(·, ·) and viscosity function ε(·, ·) depending on the masses satisfy

P(n,m) = K1

(
n

ρl − m

)γ

, ε(n,m) = K2n
β

(ρl − m)β+1
, K1,K2 > 0. (1.4)
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