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Abstract

In this paper, we study the global approximate multiplicative controllability for nonlinear degenerate 
parabolic Cauchy–Neumann problems. First, we obtain embedding results for weighted Sobolev spaces, 
that have proved decisive in reaching well-posedness for nonlinear degenerate problems. Then, we show that 
the above systems can be steered in L2 from any nonzero, nonnegative initial state into any neighborhood of 
any desirable nonnegative target-state by bilinear piecewise static controls. Moreover, we extend the above 
result relaxing the sign constraint on the initial data.
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1. Introduction

This paper is concerned with the analysis of semilinear parabolic control systems in one space 
dimension, governed in the bounded domain (−1, 1) by means of the bilinear control α(t, x), 
of the form

⎧⎪⎨
⎪⎩

ut − (
a(x)ux

)
x

= α(t, x)u + f (t, x,u) in QT := (0, T ) × (−1,1)

a(x)ux(t, x)|x=±1 = 0 t ∈ (0, T )

u(0, x) = u0(x) x ∈ (−1,1).

(1.1)

The equation in the Cauchy–Neumann problem above is a degenerate parabolic equation, because 
the diffusion coefficient, positive on (−1, 1), is allowed to vanish at the extreme points of [−1, 1].

The main physical motivations for studying degenerate parabolic problems with the above 
structure come from mathematical models in climate science as we explain below.

1.1. Physical motivations: climate models and degenerate parabolic equations

Climate depends on various parameters such as temperature, humidity, wind intensity, the 
effect of greenhouse gases, and so on. It is also affected by a complex set of interactions in the 
atmosphere, oceans and continents, that involve physical, chemical, geological and biological 
processes.

One of the first attempts to model the effects of the interaction between large ice masses 
and solar radiation on climate is the one due, independently, to Budyko [8,9], and Sellers [41]
(see also [20–23,30,42,4,43] and the references therein). The Budyko–Sellers model is an energy 
balance model, which studies the role played by continental and oceanic areas of ice on climate 
change. The effect of solar radiation on climate can be summarized in the following:

Heat variation = Ra − Re + D,

where Ra is the absorbed energy, Re is the emitted energy and D is the diffusion part.
The general formulation of the Budyko–Sellers model on a compact surface M without 

boundary is as follows

ut − �Mu = Ra(t,X,u) − Re(t,X,u),

where u(t, X) is the distribution of temperature, �M is the classical Laplace–Beltrami operator, 
Ra(t, X, u) = Q(t, X)β(X, u). In the above, Q is the insolation function, that is, the incident 
solar radiation at the top of the atmosphere. In annual models, when the time scale is long enough, 
one may assume that the insolation function doesn’t depend on time t , i.e. Q = Q(X). But, 
when the time scale is smaller, as in seasonal models, one uses a more realistic description of 
the incoming solar flux by assuming that Q depends on t , i.e. Q = Q(t, X). β is the coalbedo
function, that is, 1-albedo function. Albedo is the reflecting power of a surface. It is defined as the 
ratio of reflected radiation from the surface to incident radiation upon it. It may also be expressed 
as a percentage, and is measured on a scale from zero, for no reflecting power of a perfectly black 
surface, to 1, for perfect reflection of a white surface.
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