
The Journal of Systems and Software 106 (2015) 59–81

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A large-scale study on the usage of Java’s concurrent programming

constructs

Gustavo Pinto∗, Weslley Torres, Benito Fernandes, Fernando Castor, Roberto S.M. Barros

Informatics Center, Federal University of Pernambuco (CIn-UFPE), Av. Jornalista Anibal Fernandes, S/N, Recife-PE 50.740-560, Brazil

a r t i c l e i n f o

Article history:

Received 14 October 2014

Revised 14 April 2015

Accepted 18 April 2015

Available online 24 April 2015

Keywords:

Java

Concurrency

Software evolution

a b s t r a c t

In both academia and industry, there is a strong belief that multicore technology will radically change the

way software is built. However, little is known about the current state of use of concurrent programming

constructs. In this work we present an empirical work aimed at studying the usage of concurrent programming

constructs of 2227 real world, stable and mature Java projects from SourceForge. We have studied the usage

of concurrent techniques in the most recent versions of these applications and also how usage has evolved

along time. The main findings of our study are: (I) More than 75% of the latest versions of the projects either

explicitly create threads or employ some concurrency control mechanism. (II) More than half of these projects

exhibit at least 47 synchronized methods and 3 implementations of the Runnable interface per 100,000 LoC,

which means that not only concurrent programming constructs are used often but they are also employed

intensively. (III) The adoption of the java.util.concurrent library is only moderate (approximately 23% of

the concurrent projects employ it). (IV) Efficient and thread-safe data structures, such as ConcurrentHashMap,

are not yet widely used, despite the fact that they present numerous advantages.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multicore systems offer the potential for cheap, scalable, high-

performance computing and also for significant reductions in power

consumption. To achieve this potential, it is essential to take advan-

tage of new heterogeneous architectures comprising collections of

multiple processing elements. To leverage multicore technology, ap-

plications must be concurrent, which poses a challenge, since it is

well-known that concurrent programming is hard (Sutter, 2005). A

number of programming languages provide constructs for concur-

rent programming. These solutions vary greatly in terms of abstrac-

tion, error-proneness, and performance. The Java programming lan-

guage is particularly rich when it comes to concurrent programming

constructs. For example, it includes the concept of monitor, a low-

level mechanism supporting both mutual exclusion and condition-

based synchronization, as well as a high-level library (Lea, 2005),

java.util.concurrent, also known as j.u.c., introduced in version

1.5 of the language.

In both academia and industry, there is a strong belief that mul-

ticore technology will radically change the way software is built.

However, to the best of our knowledge, there is a lack of reliable

∗ Corresponding author. Tel.: +55 9191563390.

E-mail addresses: ghlp@cin.ufpe.br, gustavohenrique.86@gmail.com (G. Pinto),

wst@cin.ufpe.br (W. Torres), jbfan@cin.ufpe.br (B. Fernandes), castor@cin.ufpe.br

(F. Castor), roberto@cin.ufpe.br (R.S.M. Barros).

information about the current state of the practice of the develop-

ment of concurrent software in terms of the constructs that develop-

ers employ. In this work, we aim to partially fill this gap.

Specifically, we present an empirical study aimed at establishing

the current state of the practical usage of concurrent programming

constructs in Java applications. We have analyzed 2227 stable and

mature Java projects comprising more than 600 million lines of code

(LoC—without blank lines and comments) from SourceForge, one of

the most popular open source code repositories. Our analysis encom-

passes several versions of these applications and is based on more

than 50 source code metrics that we have automatically collected. We

have also studied correlations among some of these metrics in an at-

tempt to find trends in the use of concurrent programming constructs.

We have chosen Java because it is a widely used object-oriented pro-

gramming language. Moreover, as we said before, it includes support

for multithreading with both low-level and high-level mechanisms.

Additionally, it is the language with the highest number of projects

in SourceForge.

Evidence on how concurrent programs are written can raise devel-

oper awareness about available mechanisms. It can also indicate how

well-accepted some of these mechanisms are in practice. Moreover, it

can inform researchers designing new mechanisms about the kinds of

constructs that developers may be more willing to use. Tool vendors

can also benefit by supporting developers in the use of lesser-known,

more efficient mechanisms, for example, by implementing novel

refactorings (Dig et al., 2009; Ishizaki et al., 2011; Schäfer et al., 2011a).

http://dx.doi.org/10.1016/j.jss.2015.04.064

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.04.064
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.04.064&domain=pdf
mailto:ghlp@cin.ufpe.br
mailto:gustavohenrique.86@gmail.com
mailto:wst@cin.ufpe.br
mailto:jbfan@cin.ufpe.br
mailto:castor@cin.ufpe.br
mailto:roberto@cin.ufpe.br
http://dx.doi.org/10.1016/j.jss.2015.04.064


60 G. Pinto et al. / The Journal of Systems and Software 106 (2015) 59–81

Furthermore, results such as those uncovered by this study can sup-

port lecturers in more convincingly arguing students into the impor-

tance of concurrent programming, not only for the future of software

development, but also for the present.

Mining data from the SourceForge repository poses several chal-

lenges. Some of them are inherent to the process of obtaining reli-

able data. These derive mainly from two factors: scale and lack of

a standard organization for source code repositories. Others pertain

to transforming the data into useful information. Grechanik et al.

(2010) discussed a few challenges that make it difficult to obtain ev-

idence from source code. For example, getting the source code of all

software versions is difficult because there is no naming pattern to

define if a compressed file contains source code, binary code or some-

thing else. Furthermore, it is difficult to be sure that an error has not

occurred during measurement, due to the number of projects and

project versions. We address these challenges by creating an infras-

tructure for obtaining and processing large code bases, specifically

targeting SourceForge. In addition, we have conducted a survey with

the committers of some of these projects as an attempt to verify

whether their beliefs are supported by our data.

Based on the data we have obtained, we propose to answer a

number of research questions (RQ).

1.1. RQ1: Do Java applications use concurrent programming constructs?

We found out that more than 75% of the most recent versions of the

examined projects include some form of concurrent programming,

e.g., at least one occurrence of the synchronized keyword. In medium

projects (20,001–100,000 LoC) this percentage grows to more than

90% and reaches 100% for large projects (over 100,000 LoC). In addi-

tion, the mean numbers (per 100,000 LoC) of synchronized methods,

classes extending Thread, and classes implementing Runnable are, re-

spectively, 66.75, 13, and 13.85. These results indicate that projects

often use concurrent programming constructs and a considerable

number do so intensively.1 On the other hand, perhaps counterin-

tuitively, the overall percentage of concurrent projects has not seen

significant change throughout the years, despite the pervasiveness of

multicore machines.

1.2. RQ2: Have developers moved to library-based concurrency?

Our data shows that only 23.21% of the analyzed concurrent

projects employ classes of the java.util.concurrent library. On the

other hand, there has been a growth in the adoption of this library.

However, this growth does not in general seem to be related to a de-

crease in the use of Java’s traditional concurrent programming con-

structs, with a few exceptions. Furthermore, projects that have been

in active development more recently, i.e., had at least one version

released since 2009, employ the java.util.concurrent library more

intensively than the mean. Therefore, the percentage of active, mature

projects that use that library is actually higher than 23.21%.

1.3. RQ3: How do developers protect shared variables from concurrent

threads?

Most of the projects use synchronized blocks and methods. The

volatile modifier, explicit locks (including variations such as read-

write locks), and atomic variables are less common, albeit some of

them seem to be growing in popularity. We also noticed a tendency

1 Throughout the paper, we often employ the terms “frequent” and “intensive”. We

use the first one to refer to the number of projects that employ a given construct. We

use the term “often” as a synonym to “frequently”. We employ the term “intensive” to

refer to the number of uses of a given construct within a single project. For example,

synchronizedmethods are used both frequently and intensively because a large number

of projects use this construct and most of them use it many times.

of growth in the use of synchronized blocks. In particular, the growth

in their use correlates positively with the growth in the use of atomic

data types, explicit locks, and the volatile modifier.

1.4. RQ4: Do developers still use the java.lang.Thread class to create

and manage threads?

We found out that implementing the Runnable interface is the

most common approach to define new threads. Moreover, a con-

siderable number of projects employ Executors to manage thread

execution (11.14% of the concurrent projects). It was possible to ob-

serve that projects that employ executors exhibit a weak tendency to

reduce the number of classes that explicitly extend the Thread class.

1.5. RQ5: Are developers using thread-safe data structures?

We observed that developers are still using mostly Hashtable and

HashMap, even though the former is thread-safe but inefficient and the

latter is not thread-safe. Notwithstanding, there is a tendency towards

the use of ConcurrentHashMap as a replacement for other associative

data structures in a number of projects.

1.6. RQ6: How often do developers employ condition-based

synchronization?

A large number of concurrent projects include invocations of

the notify(), notifyAll(), or wait() methods. At the same time,

we noticed that a small number of projects have eliminated many

uses of these methods, employing the CountDownLatch class, part of

the java.util.concurrent library, instead. This number is not large

enough for statistical analysis. Nevertheless, it indicates that mecha-

nisms with simple semantics like CountDownLatch have potential to,

in some contexts, replace lower-level, more traditional ones.

1.7. RQ7: Do developers attempt to capture exceptions that might cause

abrupt thread failure?

Our data indicates that less than 3% of the concurrent projects

implement the Thread.UncaughtExceptionHandler interface, which

means that, in 97% of the concurrent projects, an exception stem-

ming from a programming error might cause threads to die silently,

potentially affecting the behavior of threads that interact with them.

Moreover, analyzing these implementations, we discovered that de-

velopers often do not know what to do with uncaught exceptions in

threads, even when they do implement a handler. This provides some

indications that new exception handling mechanisms that explicitly

address the needs of concurrent applications are called for.

To provide a basic intuition as to what developers believe to be

true about the usage of concurrent programming constructs, we have

also conducted a survey with more than 160 software developers.

These developers are all committers of projects whose source code

we have analyzed. This survey presented respondents with various

questions, such as “What do you believe to be the most often used

concurrent/parallel programming construct of the Java language?”.

Throughout the paper, we contrast the results of this survey with

data obtained by analyzing the Java source code.

This work makes the following contributions:

• It is the first large-scale study on the usage of concurrent pro-

gramming constructs in the Java language, including an analysis

on how the usage of these constructs has evolved along time.
• It presents a considerable amount of data pertaining to the current

state-of-the-practice of real concurrent projects and the evolution

of these projects along time.
• It presents results from a survey conducted with committers of

some of the analyzed projects. This survey provides an overview



Download English Version:

https://daneshyari.com/en/article/461026

Download Persian Version:

https://daneshyari.com/article/461026

Daneshyari.com

https://daneshyari.com/en/article/461026
https://daneshyari.com/article/461026
https://daneshyari.com

