
The Journal of Systems and Software 106 (2015) 82–101

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An exploratory study on exception handling bugs in Java programs

Felipe Ebert a,∗, Fernando Castor a, Alexander Serebrenik b

a Centro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Brazil
b Eindhoven University of Technology, Eindhoven, The Netherlands

a r t i c l e i n f o

Article history:

Received 22 August 2014

Revised 29 March 2015

Accepted 20 April 2015

Available online 24 April 2015

Keywords:

Exception handling

Bugs

Repository mining

a b s t r a c t

Most mainstream programming languages provide constructs to throw and to handle exceptions. However,

several studies argue that exception handling code is usually of poor quality and that it is commonly neglected

by developers. Moreover, it is said to be the least understood, documented, and tested part of the implemen-

tation of a system. Nevertheless, there are very few studies that analyze the actual exception handling bugs

that occur in real software systems or that attempt to understand developers’ perceptions of these bugs. In

this work we present an exploratory study on exception handling bugs that employs two complementary

approaches: a survey of 154 developers and an analysis of 220 exception handling bugs from the repositories

of Eclipse and Tomcat.

Only 27% of the respondents claimed that policies and standards for the implementation of error handling

are part of the culture of their organizations. Moreover, in 70% of the organizations there are no specific tests

for the exception handling code. Also, 61% of the respondents stated that no to little importance is given to

the documentation of exception handling in the design phase of the projects with which they are involved.

In addition, about 40% of the respondents consider the quality of exception handling code to be either good

or very good and only 14% of the respondents consider it to be bad or very bad. Furthermore, the repository

analysis has shown (with statistical significance) that exception handling bugs are ignored by developers

less often than other bugs. We have also observed that while overly general catch blocks are a well-known

bad smell related to exceptions, bugs stemming from these catch blocks are rare, even though many overly

general catch blocks occur in the code. Furthermore, while developers often mention empty catch blocks as

causes of bugs they have fixed in the past, we found very few bug reports caused by them. On top of that,

empty catch blocks are frequently used as part of bug fixes, including fixes for exception handling bugs.

Based on our findings, we propose a classification of exception handling bugs and their causes. The

proposed classification can be used to assist in the design and implementation of test suites, to guide code

inspections, or as a basis for static analysis tools.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Modern software systems must include provisions to handle er-

rors at runtime. An error is “part of the system internal state which

is liable to lead to subsequent failure”, while “a system failure occurs

when the service delivered by the system deviates from what the

system is aimed at” (Garcia et al., 2001, p. 198). Errors may stem from

application logic-related erroneous conditions, e.g., an invalid bank

account number, undetected bugs, e.g., null dereferences and arith-

metic overflow, or environmentally triggered erroneous conditions,

e.g., impossibility to open a file or communicate via network. Excep-

tion handling mechanisms promote separation of concerns between

∗ Corresponding author. Tel.: +558196491241.

E-mail addresses: fe@cin.ufpe.br, felipe.ebert@gmail.com (F. Ebert),

castor@cin.ufpe.br (F. Castor), a.serebrenik@tue.nl (A. Serebrenik).

the normal execution flow of an application and the execution flow

in which errors are handled.

At the beginning, exceptions were handled just by returning er-

ror codes (success or failure) (Cabral and Marques, 2007). ML (Milner

et al., 1990) was the first programming language that implemented

typed exceptions, i.e., it allowed developers to define a new type

(within the language) for each different type of error. Prior to that,

different types of errors were defined by values in the language. The

use of types is important because it promotes static checking of ex-

ception usage. The throw-catch style of exception signaling and han-

dling was introduced by LISP (McCarthy, 1978). More recently, several

modern programming languages, like Java, Ruby, C#, C++ and Scala,

implement exception handling and a considerable part of the system

source code is often dedicated to error detection and handling (Cabral

and Marques, 2007; Weimer and Necula, 2008). Nonetheless,

developers have a tendency to focus on the normal behavior of the

applications, i.e., what it should do when no errors occur, and deal

http://dx.doi.org/10.1016/j.jss.2015.04.066

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.04.066
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.04.066&domain=pdf
mailto:fe@cin.ufpe.br
mailto:felipe.ebert@gmail.com
mailto:castor@cin.ufpe.br
mailto:a.serebrenik@tue.nl
http://dx.doi.org/10.1016/j.jss.2015.04.066


F. Ebert et al. / The Journal of Systems and Software 106 (2015) 82–101 83

with error handling only during the system implementation, in an ad

hoc manner (Cristian, 1989; Reimer and Srinivasan, 2003).

Several studies (Cristian, 1989; Reimer and Srinivasan, 2003; Shah

et al., 2010) argue that the quality of exception handling code is usu-

ally poor and that this part of the code is commonly neglected by

developers. Moreover, the exception handling code is often hard to

test due to both the numerous exceptional conditions that might oc-

cur in a non-trivial application and to the need to stimulate all possible

causes for exceptions during testing (Coelho et al., 2011). Quality of

exception handling code, lack of developers’ attention, and testing-

related challenges specific to exception handling code can therefore

be expected to create a fertile ground for bugs. Nevertheless, very

few studies analyze exception handling bugs (EH-bugs) occurring in

real software systems and no study has attempted to understand de-

velopers’ perceptions about these bugs. We consider an EH-bug to

be a bug whose cause is related to exception handling. It may be a

problem related to the definition, throwing, propagation, handling,

or documentation of exceptions, to situations where an exception

should be throw or handled but is not, and to the use of clean-up

actions associated to regions of the code that may throw exceptions.

In this paper, we address this challenge by conducting an empir-

ical study of EH-bugs, i.e., bugs caused by the definition, throwing,

propagation, handling, or documentation of exceptions. We aim to

gain a better understanding of the causes of these bugs, their fre-

quency, severity, and difficulty of fixing them. Such understanding

can be beneficial not only for developers but also for tool designers

aiming at supporting software developers in their daily tasks. We

complement the objective information about EH-bugs with an inves-

tigation of the developers’ perceptions about exception handing, in

general, and EH-bugs, in particular. The combination of the empirical

study of EH-bugs with the investigation of their perceptions allows us

to triangulate our findings, such a triangulation being considered an

important step in empirical software engineering research (Runeson

and Hst, 2009).

The study involved, therefore, analysis of two data sources: (i) 220

bug reports related to error handling from the Bugzilla repositories

of two large systems, Tomcat and Eclipse; and (ii) 154 responses

to a survey conducted with software developers from industry and

academia. Furthermore, we have inspected the source code of patches

attached to the aforementioned bug reports, when available. We have

considered the following four research questions:

RQ1: Do organizations and developers take exception handling into

account? Our findings indicate that developers do pay attention to

exception handling, even though their organizations do not. Only 27%

of the respondents claimed that policies and standards for the imple-

mentation of error handling are part of the culture of their organiza-

tions. In 70% of the organizations there are no specific tests for the

exception handling code. Furthermore, 61% of the respondents stated

that their organizations give little to no importance to the documen-

tation of exception handling in the design phase. In contrast, 66% of

the respondents claim that they employ exception handling to create

ways to tolerate faults and 63% do it to improve the system function-

ality (they could select multiple answers). Only 17% use exception

handling mainly for debugging and 21% because of organizational

policies. In addition, the repository analysis has shown that excep-

tion handling bugs are ignored by developers less often than other

bugs. For example, for Eclipse, 96.65% of EH-bugs have the “Fixed”

resolution whereas only 3.26% have “Wontfix” or “Worksforme” as

resolutions.

RQ2: How common are EH-bugs? Developers seem to overestimate

the frequency of occurrence of EH-bugs. On the average, they believe

that 9.72% of the bugs in a system are EH-bugs. Analysis of the bug

repositories of Eclipse and Tomcat yielded much smaller percentages,

0.35 and 1.87%, respectively.

RQ3: Are EH-bugs harder to fix than other bugs? Following the sug-

gestion of Fonseca et al. (2010) we employed the bug fixing time and

Table 1

Classification of EH-bugs.

Lack of a handler that should exist

Exception not thrown

Error in the handler

Error in the clean-up action

Exception caught at the wrong level

General catch block

Wrong exception thrown

Exception that should not have been thrown

Wrong encapsulation of exception cause

Lack of a finally block that should exist

Error in the exception assertion

Inconsistency between source code and API documentation

Empty catch block

Error in the definition of exception class

catch block where only a finally would be appropriate

the number of discussion messages as proxies for the difficulty of

fixing a bug. The analysis of the bug repositories of Tomcat revealed

that there is no significant difference for both proxies. For Eclipse

there was a statistically significant difference only for the number of

discussion messages: it is greater for EH-bugs. This could be an evi-

dence that EH-bugs are as hard to fix as any other bug but they might

generate lengthier discussions.

RQ4: What are the main causes of EH-bugs? We discovered that bug

reports describing bugs stemming from overly general catch blocks,

a well-known bad smell in programs that use exceptions (Cabral and

Marques, 2007; Robillard and Murphy, 2003), are rare, even though

there are many opportunities for them to occur and developers re-

port that they have encountered this kind of bug in the past. Empty

catch blocks, another well-known bad smell, are not only prevalent,

as previously reported in literature (Cabral and Marques, 2007), but

also commonly used as part of bug fixes, including fixes for EH-bugs.

Moreover, developers often state in the code, by means of comments,

that these catch blocks do not capture exceptions in practice. How-

ever, we found very few bug reports (only 2 among 220) whose causes

are empty catch blocks, although developers often mention empty

catch blocks as causes of bugs they have fixed in the past.

In addition to the aforementioned findings, we present a classifi-

cation of EH-bugs, on Table 1, and their causes—reported during the

survey or obtained by analyzing bug reports. The proposed classifica-

tion can be used as a checklist to design test cases and to assist during

code reviews, as well as a basis for static analysis tools for code defect

detection, e.g., similar to FindBugs (Ayewah et al., 2008).

The remainder of this paper is organized as follows. Section 2

presents the methodology used in this work and also the threats

to the validity. Section 3 presents the results from the survey and

the analysis of the bug repositories and also our proposed classifi-

cation for causes of EH-bugs. Section 5 discusses related work and

Section 6 summarizes the contributions and conclusions of this work

and discusses future work. Finally, Appendix A presents a compre-

hensive explanation of the comparison between ours and Barbosa

et al. (2014) EH-bug classification.

2. Methodology

To explore the reality of both EH-bugs and developers’ percep-

tions, we combined investigation of bug repositories with a survey

of developers’ opinions. Our study focuses on two large and mature

open source applications: Tomcat1 and Eclipse.2 Both systems are

written in Java (which comprise Java versions from 1 to 7, but our

analysis did not make any distinction based on the Java version),

the language that arguably popularized exception handling, and use

1 http://tomcat.apache.org
2 http://www.eclipse.org

http://tomcat.apache.org
http://www.eclipse.org


Download English Version:

https://daneshyari.com/en/article/461027

Download Persian Version:

https://daneshyari.com/article/461027

Daneshyari.com

https://daneshyari.com/en/article/461027
https://daneshyari.com/article/461027
https://daneshyari.com

