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1. Introduction

Multidimensional first-order systems of conservation or balance laws are widely adopted mathe-
matical models. Here we address the combination or modification of such systems so as to obtain
hyperbolicity and a desired symmetry group for the resulting system.

However desirable or necessary in a particular application, such features may prove elusive. A well-
known example is the combination of copies of the Euler system, by choice of the equations of
state, to obtain two-fluid or multi-fluid models [3]. Indeed, application to this problem, previously
reported [13], largely motivated the present study. A second example is the combination of an Euler
system with Maxwell’s equations to obtain models of magnetohydrodynamic flow. As we shall dis-
cuss below, the Lundquist system [8,4,2], constructed on physical grounds, satisfies such criteria but
nonetheless remains controversial.

For a first-order system of conservation or balance laws, the existence of a strictly convex en-
tropy density implies hyperbolicity [5], and provides an admissibility condition and a crude bound for
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nonunique weak solutions of the related Cauchy problem [7]. Additionally, such systems necessarily
admit a “symmetric” or “gradient” form [6,9].

Our point of departure is that the symmetric form of a given system, well-known to illuminate
the existence of an entropy extension, has repeatedly been found useful, however ad hoc, in discus-
sion of the related symmetry group [10–13]. Here we undertake a more systematic treatment of this
phenomenon, combining applications to specific problems with more general results.

Using notation developed in Section 2, in Section 3 we extend the familiar symmetric form to
systems with multiple entropies and to systems for which the dimension of the system exceeds that
of the corresponding phase space. Systems with multiple entropies appear, for example, as those with
a variational formulation, the multiple entropies resulting from application of Noether’s theorem. In
contrast, below systems with a single entropy are those for which the entropy density/flux transforms
like a single vector field under coordinate transformations. Systems for which the dimension of the
symmetric form exceeds that of phase space arise when the entropy extension applies only to a
subset of solutions. Such happens for example in the Lundquist system, for which the thermodynamic
entropy relation applies only to solutions with the magnetic field initially (and of course for all time)
solenoidal.

In Section 4, we establish how the symmetry properties of a given system, necessarily reflected
in those of the entropy or entropies, are also necessarily reflected in those of the symmetric de-
pendent variables and the related potential functions. As discussed in Section 5, the results simplify
considerably in the case of systems with a single entropy.

As a first application of these results, we show in Section 6 how for a linear system, prescription
of the symmetry group can severely restrict the form of the system.

In Section 7 we apply the results to the problem of finding a reduced or simplified form of a
given system, with the same symmetry group and the same or a closely related entropy set. Fa-
miliar examples are the isentropic and incompressible Euler systems; a less familiar example is the
construction of hyperbolic two-fluid models by an affine relation between the two reciprocal fluid
temperatures [13]. These examples illustrate a more general principle established here, that for sys-
tems with a single entropy density/flux, an equation in the primitive system, corresponding to an
invariant symmetric dependent variable, may be judiciously removed without loss of the entropy or
the symmetry group.

The vector of potential functions associated with the symmetric form of both the relativistic and
nonrelativistic Euler systems assumes a simple and convenient form. In Section 8 we show that this
is not accidental, that at least within a suitable region of phase space, a Lorentz-rotation symmetric
system with a single entropy and potential functions of this form is necessarily the relativistic Euler
system.

Sections 9 and 10 are devoted to two classes of systems with multiple entropies. In each case,
the symmetry group of the system is illuminated by generalization of the canonical form in which
the system is expressed. In particular, the familiar “divergence form” of such systems is expeditiously
replaced by expressions of closed differential forms of various orders. These results are used in Sec-
tion 11 to characterize Galilean symmetric approximations of Maxwell’s equations.

As a final application, in Section 12 we recover the Lundquist system by combination of the Euler
system with one of the Maxwell approximations. This treatment exposes controversial features of this
system as a model of magnetohydrodynamic flow. Using results obtained here, alternative models of
magnetohydrodynamic flow are constructed in a companion paper.

2. Notation and preliminaries

We discuss systems with “primitive form”

d−1∑
i=0

a ji,xi = b j, j = 1, . . . ,n (2.1)
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