

Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

Regularity results on the parabolic Monge–Ampère equation with *VMO* type data

Lin Tang

LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, PR China

ARTICLE INFO

Article history: Received 1 July 2011 Revised 12 January 2013 Available online 6 June 2013

Dedicated to Professor Heping Liu on the occasion of his 60th birthday

MSC: 35J96 35B65

Keywords: Parabolic Monge-Ampère equation VMO type function

ABSTRACT

This paper establishes interior estimates for L^p -norms, Orlicz norms of solutions to the parabolic Monge-Ampère equation $-u_t \det D^2 u = f(x,t)$ provided that f(x,t) is positive, bounded, and satisfies a *VMO*-type condition, and some integrability conditions for f_t . Our results improve the corresponding results in Gutiérrez and Huang (2001) [8] in some sense.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with interior regularity of weak solutions to the parabolic Monge–Ampère equation

$$-u_t \det D^2 u = f(x, t) \quad \text{in } O = \Omega \times (0, T], \tag{1.1}$$

where u = u(x, t) is parabolically convex in Q, that is, convex in x and nonincreasing in t, D^2u denotes the Hessian of u with respect to x, Ω is a bounded convex domain in \mathbb{R}^n , and f(x, t) is positive, bounded, and satisfies a VMO-type condition.

The regularity of solutions for the parabolic Monge-Ampère equation has been studied by many authors; see [6,7,10,14–16,18,19]. In particular, Gutiérrez and Huang [8] recently investigated interior

regularity of solution to (1.1) in the case that f is continuous. For the elliptic Monge–Ampère equation, see [1-5,9,11].

Our purpose in this paper is to consider L^p -norms and Orlicz norms of solutions to (1.1), where f(x,t) satisfies a *VMO*-type condition which may be discontinuous. For the elliptic Monge–Ampère equation, the estimates of this type were established in [12].

Before stating the main results in this paper, as in [12], we recall spaces VMO(Q) and $BMO^{\Psi}(Q)$ (redenoted by $VMO^{\Psi}(Q)$ if $\Psi(0) = 0$), and introduce local spaces $VMO_{loc}(Q, u)$ and $VMO^{\Psi}_{loc}(Q, u)$.

Let Ψ be a nondecreasing continuous function on $[0, \infty)$ such that $\Psi(t) > 0$ for t > 0 and $t/\Psi(t)$ is almost increasing, which means $t/\Psi(t) \leqslant Ks/\Psi(s)$ for 0 < t < s. For $f \in L^1(Q)$ and $A \subset Q$, the mean oscillation of f(x,t) over A is defined by

$$\operatorname{mosc}_{A} f = \frac{1}{|A|} \int_{A} |f(x, t) - f_{A}| dx dt,$$

where f_A denotes the average of f over A. Let $z_0 = (x_0, t_0)$ and $Q_{(r)}(z_0) = B_r(x_0) \times (t_0 - r^2, t_0)$, where $B_r(x_0)$ is the ball centered at x_0 with radius r.

A function $f \in L^1(Q)$ belongs to $BMO_{\Psi}(Q)$ if there exists a constant C such that

$$\mathsf{mosc}_{\mathbb{Q}_{(r)}(z_0)\cap\mathbb{Q}} f \leqslant C\Psi(r)$$

for all $z_0 \in Q$, $0 < r \leqslant d = \operatorname{diam}(Q)$, where $\operatorname{diam}(Q)$ is the diameter of Q. We recall that $f \in VMO(Q)$ if and only if $\operatorname{mosc}_{Q(r)}(z_0) \cap Q$ f converges to 0 uniformly in $z_0 \in Q$ as $r \to 0$. For further properties of $BMO_{\Psi}(Q)$, see [11,12]. If $\Psi = 1$, $BMO_{\Psi}(Q)$ is the usual BMO(Q) space. Obviously, if $f \in BMO_{\Psi}(Q)$ with $\Psi(0) = 0$, then f has vanishing mean oscillation of modulus $C\Psi$. For this reason, we set $VMO^{\Psi} = BMO_{\Psi}(Q)$ if $\Psi(0) = 0$.

To introduce $VMO_{loc}(Q, u)$ and $VMO_{loc}^{\psi}(Q, u)$, we recall the notation of sections of a parabolically convex function u.

For $z_0 = (x_0, t_0) \in \mathbb{Q}$, the section $\mathbb{Q}_h(z_0) = \mathbb{Q}_h(u, z_0)$ is defined by

$$Q_h(z_0) = \{(x, t) \in Q : u(x, t) \le l_{z_0}(x) + h \text{ and } t \le t_0\},\$$

where $l_{z_0}(x) = u(x_0, t_0) + Du(x_0, t_0)(x - x_0)$.

Given a function $f \in L^1(Q)$, we say that $f \in VMO_{loc}(Q, u)$ if for any $Q' \subseteq Q$

$$Q_f(r, Q') = \sup_{z_0 \in Q', \text{ diam } Q_h(u, z_0) \leqslant r} \operatorname{mosc}_{Q_h(u, z_0)} f \to 0, \quad \text{as } r \to 0.$$

A function $f \in L^{n+1}(Q)$ is said to be in $VMO^{\Psi}_{loc}(Q,u)$ where $\Psi(0)=0$ if for any $\Omega' \times (\epsilon,T]$ with $\Omega' \subseteq \Omega$ and $0 < \epsilon < T$, there exists C = C(Q') such that for all $z_0 \in Q'$ and $Q_h(u,z_0) \subset Q$

$$\operatorname{mosc}_{Q_{\hbar}(u,z_0)}^{(n+1)}f\leqslant C\Psi\big(\operatorname{diam}\big(Q_{\hbar}(u,z_0)\big)\big),$$

where $\operatorname{mosc}_A^{(n+1)} f = (\frac{1}{|A|} \int_A |f(x,t) - f_A|^{n+1} dx dt)^{1/(n+1)}$. Denote by $[f]_{VMO^{\psi}(Q',u)}$ the smallest of all such constants C(Q'). The following theorem is the main results of this paper.

Theorem A. Let u = u(x,t) be parabolically convex and a solution to (1.1) in the cylinder $Q = \Omega \times (0,T]$ with $u = \varphi$ on $\partial_p Q = \partial \Omega \times (0,T] \cup \bar{\Omega} \times \{0\}$. Assume

(A1) $B_{n^{-3/2}}(0) \subset \Omega \subset B_1(0)$ convex, $\partial \Omega \in C^{1,\alpha}$ with $\alpha > 1 - 2/n$; and $\exp(A(-f_t)^+) \in L^1(\mathbb{Q})$ for some A > 0, and

Download English Version:

https://daneshyari.com/en/article/4610273

Download Persian Version:

 $\underline{https://daneshyari.com/article/4610273}$

Daneshyari.com